Screen Updating and Cursor Movement Optimization:
A Library Package

Kenneth C. R. C. Arnold
Elan Amir

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes a package of C library functions which allow the user to:
e update a screen with reasonable optimization,
e getinput from the terminal in a screen-oriented fashion, and
« independent from the aboveprethe cursor optimally from one point to another.

These routines all use themmcap(5) database to describe the capabilities of the terminal.
Acknowledgements

This package would not exist without the work of Bill Joy, who, in writing his editor, created the
capability to generally describe terminals, wrote the routines which read this database, and, most impor-
tantly, those which implement optimal cursor movement, which routines | have simply lifted nearly intact.
Doug Merritt and Kurt Shoens also were extremely important, as were both willing to waste time listening
to me rant and rave. The help and/or support of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash,
was, and is, also greatly appreciaté&@n Arnold 16 April 1986

The help and/or support of Kirk McKusick and Keith Bostic (public vi!) was invaluable in bringing
the package “into the 90's”, which now includes completely new data structures and screen refresh opti-
mization routines.Elan Amir 29 December 1992

Screen Package PS1:19-3

1. Qverview

In making available the generalized terminal descriptionteimcap(5), much information was
made available to the programmer, but little work was taken out of one’s hands. The purpose of this pack-
age is to allow the C programmer to do the most common type of terminal dependent functions, those of
movement optimization and optimal screen updating, without doing any of the dirty work, and with nearly
as much ease as is necessary to simply print or read things.

1.1. Termminology
In this document, the following terminology is used:

window: An internal representation containing an image of what a section of the terminal screen may look
like at some point in time. This subsection can either encompass the entire terminal screen, or any
smaller portion down to a single character within that screen.

terminal: Sometimes calleterminal screen. The package’s idea of what the terminal’s screen currently
looks like,i.e., what the user sees now. This is a spextisden

screen: This is a subset of windows which are as large as the terminal Soeee¢hey start at the upper left
hand corner and encompass the lower right hand corner. One ofdfusee,is automatically pro-
vided for the programmer.

1.2. Compiling Applications

In order to use the library, it is necessary to have certain types and variables defined. Therefore, the
programmer must have a line:

#include <cursesim>
at the top of the program source. Compilations should have the following form:
cc| flags] file ... —lcurses—Itenmcap

1.3. Screen Updating

In order to update the screen optimally, it is necessary for the routines to know what the screen cur-
rently looks like and what the programmer wants it to look like next. For this purpose, a data type (struc-
ture) namedNINDOWis defined which describes a window image to the routines, including its starting
position on the screen (the (y, X) co-ordinates of the upper left hand corner) and its size. One of these
(called curscr for current screepis a screen image of what the terminal currently looks like. Another
screen (calledtdsct for standard screexis provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a potential image of a por-
tion of the terminal. It doesn't bear any necessary relation to what is really on the terminal screen. It is
more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like, the routine
refresh () (orwrefresh () if the window is nosstdsc) is called. Refresh () makes the terminal, in the
area covered by the window, look like that window. Note, therefore, that changing something on a window
doesnot change the terminal Actual updates to the terminal screen are made only by cedliresh ()
or wrefresh (). This allows the programmer to maintain several different ideas of what a portion of the
terminal screen should look like. Also, changes can be made to windows in any order, without regard to
motion efficiency. Then, at will, the programmer can effectively say “make it look like this”, and the pack-
age will execute the changes in an optimal way.

PS1:19-4 Screen Package

1.4. Naming Conventions

As hinted above, the routines can use several windows, but two are always awailagiewhich is
the image of what the terminal looks like at present,sadsict which is the image of what the programmer
wants the terminal to look like next. The user should not aenassrdirectly. Changes should be made
to the appropriate screen, and then the rouéfresh () (orwrefresh () should be called.

Many functions are set up to deal witdscras a default screen. For example, to add a character to
stdscr one callsaddch () with the desired character. If a different window is to be used, the rowtide

dch () (for window-specificaddch () is provided. This convention of prepending function names with a
“w” when they are to be applied to specific windows is consistent. The only routines whichdinthis
are those to which a window must always be specified.

In order to nove the current (y, X) co-ordinates from one point to another, the routhoe®() and
wmove() are provided. However, it is often desirable to firgtvenand then perform some 1/O operation.
In order to avoid clumsiness, most I/O routines can be preceded by the prefiarid the desired (y, X)
co-ordinates can then be added to the arguments to the function. For example, the calls

move(y, X);
addch(ch);

can be replaced by
mvaddch(y, x, ch);
and

wmove(win, Y, X);
waddch(win, ch);

can be replaced by
mvwaddch(win, y, x, ch);

Note that the window description pointavi) comes before the added (y, x) co-ordinates. If a window
pointer is needed, it is always the first parameter passed.

2. Variables

Many variables which are used to describe the terminal environment are available to the programmer.
They are:

type name description
WINDOW O curscr current version of the screen (terminal screen).
WINDOW O stdscr standard screen. Most updates are usually done here.
charO Def _term default terminal type if type cannot be determined
bool My_term use the terminal specificationref termas terminal, irrele-
vant of real terminal type
charO ttytype full name of the current terminal.
int LINES number of lines on the terminal
int COLS number of columns on the terminal
int ERR error flag returned by routines on a fail.
int OK flag returned by routines upon success.
3. Usage

This is a description of how to actually use the screen package. For simplicity, we assume all updat-
ing, reading, etc. is applied sddscr although a different window can of course be specified.

! Actually, addch () is really a “#define” macro with arguments, as are most of the "functions" which acttdson

Screen Package PS1:19-5

3.1 limitialization

In order to use the screen package, the routines must know about terminal characteristics, and the
space forcurscr and stdscrmust be allocated. These functions are performegdhibscr (). Since it
must allocate space for the windows, it can overflow core when attempting to do so. On this rather rare
occasionjnitscr () returns ERR.Initscr () mustalwaysbe called before any of the routines which
affect windows are used. If it is not, the program will core dump as soon asceitheror stdscrare ref-
erenced. However, it is usually best to wait to call it until after you are sure you will need it, like after
checking for startup errors. Terminal status changing routineslikeandcbreak () should be called
afterinitscr ().

After the initial window allocation done bipitscr (), specific window characteristics can be set.
Scrolling can be enabled by callisgrollok (). If you want the cursor to be left after the last change,
useleaveok (). If this isn’'t doneyefresh () will movethe cursor to the window’s current (y, x) co-ordi-
nates after updating it. Additional windows can be created by using the funcéamngn () andsub-
win (). Delwin () allows you to delete an exisiting window. The varialllB®$ES and COLScontrol the
size of the terminal. They are initially implicitly set Iyitscr (), but can be altered explicitly by the
user followed by a call tmitscr (). Note that any call tanitscr (), will always delete any existing
stdscr and/or curscr before creating new ones so this change is best done before the initial call to
initscr ().

3.2. Qutput

The basic functions used to change what will go on a windovaddeh () andmove(). Addch ()
adds a character at the current (y, x) co-ordinates, returning ERR if it would cause the window to illegally
scroll, i.e., printing a character in the lower right-hand corner of a terminal which automatically scrolls if
scrolling is not allowed.Move() changes the current (y, X) co-ordinates to whatever you want them to be.
It returns ERR if you try to wve off the window. As mentioned above, you can combine the two into
mvaddch () to do both things in one call.

The other output functions (suchaddstr () andprintw ()) all calladdch () to add characters to
the window.

After a change has been made to the window, you museéaksh (). when you want the portion
of the terminal covered by the window to reflect the change. In order to optimize finding changes,
refresh () assumes that any part of the window not changed since theftash () of that window has
not been changed on the termina, that you have not refreshed a portion of the terminal with an overlap-
ping window. If this is not the case, the routin@schwin (), touchline (), andtouchoverlap () are
provided to make it look like a desired part of window has been changed, thus fefcesl () to check
that whole subsection of the terminal for changes.

If you call wrefresh () with curscr, it will make the screen look like the image afrscr. This is
useful for implementing a command which would redraw the screen in case it got messed up.

3.3. limput

Input is essentially a mirror image of output. The complementary functiaddoh () is getch ()
which, if echo is set, will calhddch () to echo the character. Since the screen package needs to know what
is on the terminal at all times, if characters are to be echoed, the tty must be in raw or cbreak mode. If it is
not,getch () sets it to be cbreak, and then reads in the character.

3.4. Termination

In order to perform certain optimizations, and, on some terminals, to work at all, some things must be
done before the screen routines start up. These functions are perfogetithiode () andsetterm (),
which are called bynitscr (). In order to clean up after the routines, the routinéwin () is provided.
It restores tty modes to what they were wimgtscr () was first called. The terminal state module uses
the variablecurses_termioso save the original terminal state which is then restored upon a eatito
win (). Thus, anytime after the call to initsemdwin () should be called before exiting. Note however,

PS1:19-6 Screen Package

thatendwin () should always be calldokfore the final calls todelwin (), which free the storage of the
windows.

4. Cursor Movement Optimizations

One of the most difficult things to do properly is motion optimization. After ugetgmode () and
setterm () to get the terminal descriptions, the functioacur () deals with this task. It usage is simple:
simply tell it where you are now and where you want to go. For example

mvcur(0, 0, LINES/2, COLS/2);

would movethe cursor from the home position (0, 0) to the middle of the screen. If you wish to force abso-
lute addressing, you can use the functigoto () from thetemmlib(7) routines, or you can tethvcur ()

that you are impossibly far away, For example, to absolutely address the lower left hand corner of the
screen from anywhere just claim that you are in the upper right hand corner:

mvcur(0, COLS-1, LINES-1, 0);

5. Character Output and Scrolling

The character output policy deals with the following problems. First, where is the location of the cur-
sor after a character is printed, and secondly, when does the screen scroll if scrolling is enabled.

In the normal case the characters are output as expected, with the cursor occupying the position of the
next character to be output. However, when the cursor is on the last column of the line, the cursor will
remain on that position after the last character on the line is output and will only assume the position on the
next line when the next character (the first on the next line) is output.

Likewise, if scrolling is enabled, a scroll will be invoked only when the first character on he first line
past the bottom line of the window is output. If scrolling is not enabled the chracters will to be output to
the bottom right corner of the window which is the cursor location.

This policy allows consistent behavior of the cursor at the boundary conditions. Furthermore, it pre-
vents a scroll from happening before it is actually needed (the old package used to scroll when the bottom
right position was output a character). As a precendent, it modettetinecharacter output conventions.

6. Terminal State Handling

The variablecurses_termiogontains the terminal state of the terminal. Certain historical routines
return informationbaudrate (), erasechar (), killichar (), andospeed (). These routines are obso-
lete and exist only for backward compatibility. If you wish to use the information icutses_termios
structure, you should use tteetatt(3) routines.

7. Subwindows

Subwindows are windows which do not have an independent text struatyrthey are windows
whose text is a subset of the text of a larger windowp#rentwindow. One consequence of this is that
changes to either the parent or the child window are destructive to thei.etharchange to the subwindow
is also a change to the parent window and a change to the parent window in the region defined by the sub-
window is implicitly a change to the subwindow as well. Apart from this detail, subwindows function like
any other window.

8. The Functions

In the following definitions, " means that the “function” is really a “#define” macro with argu-
ments.

addch (char ch;t

Screen Package PS1:19-7

Add the charactech on the window at the current (y, x) co-ordinates. If the character is a newline
("\n") the line will be cleared to the end, and the current (y, x) co-ordinates will be changed to the
beginning off the next line if newline mapping is on, or to the next line at the same x co-ordinate if it
is off. A return ("\r") will nove tothe beginning of the line on the window. Tabs ("\t") will be
expanded into spaces in the normal tabstop positions of every eight characters. This returns ERR if it
would cause the screen to scroll illegally.

addstr (char Cstr); T

Add the string pointed to bstr on the window at the current (y, x) co-ordinates. This returns ERR if
it would cause the screen to scroll illegally. In this case, it will put on as much as it can.

baudrate ();t

Returns the output baud rate of the terminal. This is a system dependent constant (defined in
<sysltty.h> on BSD systems, which is included bgursesii>).

box (WINDOW win char vert char hop;

Draws a box around the window usingrtas the character for drawing the vertical sides,hamdor
drawing the horizontal lines. If scrolling is not allowed, and the window encompasses the lower
right-hand corner of the terminal, the corners are left blank to avoid a scroll.

cbreak ();t
Set or the terminal to cbreak mode.

clear ();t

Resets the entire window to blanks. win is a screen, this sets the clear flag, which will cause a
clear-screen sequence to be sent on therafeish () call. This also moves the current (y, x) co-
ordinates to (0, 0).

clearok (WINDOWI&cr, int boolf); T

Sets the clear flag for the scresar. If boolfis non-zero, this will force a clear-screen to be printed
on the nextrefresh (), or stop it from doing so iboolfis 0. This only works on screens, and,
unlike clear (), does not alter the contents of the screersciis curscr, the nextrefresh () call

will cause a clear-screen, even if the window passeeftesh () is not a screen.

clrtobot ();t

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does not force a
clear-screen sequence on the next refresh under any circumstances. This has no assetiated “
command.

clrtoeol ();t

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This has no asso-
ciated ‘mv” command.

crmode ();t

Identical tocbreak (). The misnamed macrormode () and nocrmode () is retained for back-
wards compatibility with ealier versions of the library.

PS1:19-8 Screen Package

delch ();

Delete the character at the current (y, X) co-ordinates. Each character after it on the line shifts to the
left, and the last character becomes blank.

deleteln ();

Delete the current line. Every line below the current one wilverup, and the bottom line will
become blank. The current (y, x) co-ordinates will remain unchanged.

delwin (WINDOWUIin);

Deletes the window from existence. All resources are freed for future wsaldg(3). If a window

has asubwin () allocated window inside of it, deleting the outer window the subwindow is not
affected, even though this does invalidate it. Therefore, subwindows should be deleted before their
outer windows are.

echo ();t
Sets the terminal to echo characters.

endwin ();

Finish up window routines before exit. This restores the terminal to the state it was before
initscr () (orgettmode () andsetterm ()) was called. It should always be called before exiting
and before the final calls elwin (). It does not exit. This is especially useful for resetting tty
stats when trapping rubouts \@ignal(2).

erase ();T

Erases the window to blanks without setting the clear flag. This is analagdesarto (), except that
it never causes a clear-screen sequence to be generatecfomsh (). This has no associated
“mv” command.

erasechar ();t

Returns the erase character for the termire),the character used by the user to erase a single char-
acter from the input.

flushok (WINDOWUCWin, int bool);

Normally, refresh () fflush (’s); stdoutwhen it is finished.flushok () allows you to control
this. if boolfis non-zeroi(e., non-zero) it will do théflush (), otherwise it will not.

getch ();t

Gets a character from the terminal and (if necessary) echos it on the window. This returns ERR if it
would cause the screen to scroll illegally. Otherwise, the character gotten is retumeechidhas

been set, then the window is left unaltered. In order to retain control of the terminal, it is necessary
to have one ohoechgq cbreak or rawmodeset. If you do not set one, whatever routine you call to
read characters will sebreakfor you, and then reset to the original mode when finished.

getstr (char [str); T

Get a string through the window and put it in the location pointed &trbwhich is assumed to be
large enough to handle it. It sets tty modes if necessary, and thegetahs () (or wgetch ()) to

Screen Package PS1:19-9

get the characters needed to fill in the string until a newline or EOF is encountered. The newline
stripped off the string. This returns ERR if it would cause the screen to scroll illegally.

gettmode ();
Get the tty stats. This is normally calledibitscr ().

getyx (WINDOWIWin, inty, int X);

Puts the current (y, X) co-ordinateswah in the variabley andx. Since it is a macro, not a function,
you do not pass the address/a@indx.

idlok (WINDOWTLWin, int boolf);

Reserved for future use. This will eventually signaldfsesh () that it is all right to use the insert
and delete line sequences when updating the window.

inch ();t

Returns the character at the current position on the given window. This does not make any changes
to the window.

initscr ~ ();

Initialize the screen routines. This must be called before any of the screen routines are used. It ini-
tializes the terminal-type data and such, and without it none of the routines can operate. If standard
input is not a tty, it sets the specifications to the terminal whose name is pointeBéd trm (ini-

tially "dumb"). If the booleaMy_termis non-zeroDef termis always used. If the system supports

the TIOCGWINSZ ioctl(2) call, it is used to get the number of lines and columns for the terminal,
otherwise it is taken from themmcap description.

insch (char 9;

Insertc at the current (y, x) co-ordinates Each character after it shifts to the right, and the last charac-
ter disappears. This returns ERR if it would cause the screen to scroll illegally.

insertin ~ ();

Insert a line abve the current one. Every line below the current line will be shifted down, and the
bottom line will disappear. The current line will become blank, and the current (y, x) co-ordinates
will remain unchanged.

killchar ();t

Returns the line kill character for the termiriad,, the character used by the user to erase an entire
line from the input.

leaveok (WINDOWIwin, int boolf);T

Sets the boolean flag for leaving the cursor after the last changeollis non-zero, the cursor will

be left after the last update on the terminal, and the current (y, x) co-ordinatés ¥l be changed
accordingly. Ifboolf

is 0 the cursor will be moved to the current (y, x) co-ordinates. This flag (initially 0) retains its value
until changed by the user.

PS1:19-10 Screen Package

move(int y, int X);

Change the current (y, X) co-ordinates of the windowt®(This returns ERR if it would cause the
screen to scroll illegally.

mvcur (int lasty, int lastx int newy int newy;

Moves the terminal’s cursor frontaty, lasty to (newy, newxin an approximation of optimal fash-

ion. This routine uses the functions borrowed frexwersion 2.6. It is possible to use this optimiza-

tion without the benefit of the screen routines. With the screen routines, this should not be called by
the user.move() andrefresh () should be used to awe the cursor position, so that the routines
know what's going on.

mvprintw (inty, int x, const charfmt, ...);
Equivalent to:

move(y, X);
printw(fmt, ...);

mvscanw(int y, int x, const chaflfmt, ...);
Equivalent to:

move(y, X);
scanw(fmt, ...);

mvwin (WINDOWT[Win, int y, int X);

Move the home position of the windowin from its current starting coordinates tg ¥. If that
would put part or all of the window off the edge of the terminal scneemwin () returns ERR and
does not change anything. For subwindawswin () also returns ERR if you attempt toowe it off
its main window. If you rove amain window, all subwindows are moved along with it.

mvwprintw (WINDOWUCWin, int y, int X, const charfmt, ...);
Equivalent to:

wmove(win, Y, X);
printw(fmt, ...);

mvwscanw(WINDOWI[Win, int y, int x, const chai’fmt, ...);
Equivalent to:

wmove(win, Y, X);
scanw(fmt, ...);

newwin (int lines int cols int begin_yint begin_;

Create a new window witlines lines andcols columns starting at positiobégin vy, begin x). If
eitherlinesor colsis 0 (zero), that dimension will be set tdNES - beginy) or (COLS - beginXx)
respectively. Thus, to get a new window of dimensibiNESx COLS usenewwin (0, 0, 0, 0).

nl ();1

Screen Package PS1:19-11

Set the terminal to nl mode.e. start/stop the system from mappifRETURN> to <LINE-
FEED>. If the mapping is not donegfresh () can do more optimization, so it is recommended,
but not required, to turn it off.

nocbreak ();t
Unset the terminal from cbreak mode.

nocrmode ();t

Identical tonocbreak (). The misnamed macrocrmode () is retained for backwards compatibil-
ity with ealier versions of the library.

noecho ();t
Turn echoing of characters off.

nonl ();t
Unset the terminal to from nl mode. Sdg().

noraw ();t
Unset the terminal from raw mode. Seev ().

overlay (WINDOWLinl, WINDOW[Win2);

Overlaywinl onwin2. The contents ofvinl, insofar as they fit, are placed ain2 at their starting

(y, X) co-ordinates. This is done non-destructively, i.e., blanksviord leave the contents of the
space orwin2 untouched. Note that all non-blank characters are overwritten destructively in the
overlay.

overwrite (WINDOWLwin1, WINDOW[win2);

Overwritewinlonwin2. The contents ofvinl, insofar as they fit, are placed w2 at their starting
(y, X) co-ordinates. This is done destructivély,, blanks onwinl become blank owin2.

printw (charOmt, ..);

Performs grintf () on the window starting at the current (y, X) co-ordinates. It addstr () to

add the string on the window. It is often advisable to use the field width optigosntdf () to

avoid leaving things on the window from earlier calls. This returns ERR if it would cause the screen
to scroll illegally.

raw (); 1

Set the terminal to raw mode. On versiouNix? this also turns off newline mapping (sge()).

refresh ();t

2uNix is a trademark of Unix System Laboratories.

PS1:19-12 Screen Package

Synchronize the terminal screen with the desired window. If the window is not a screen, only that
part covered by it is updated. This returns ERR if it would cause the screen to scroll illegally. In this
case, it will update whatever it can without causing the scroll.

As a special case, iirefresh () is called with the windowcurscr the screen is cleared and
repainted as it is currently. This is very useful for allowing the redrawing of the screen when the user
has garbage dumped on his terminal.

resetty ()t

resetty () restores them to whatvetty () stored. These functions are performed automatically
byinitscr () andendwin (). This function should not be used by the user.

savetty ();t

savetty () saves the current tty characteristic flags. @setty (). This function should not be
used by the user.

scanw (char (OFmt, ...);

Perform ascanf () through the window usinfmt It does this using consecutive callsgetch ()
(orwgetch ()). This returns ERR if it would cause the screen to scroll illegally.

scroll (WINDOWILwin);
Scroll the window upward one line. This is normally not used by the user.

scrollok (WINDOWUIwin, int boolf); T

Set the scroll flag for the given window. bbolfis 0, scrolling is not allowed. This is its default set-
ting.

standend ();t
End standout mode initiated bjandout ().

standout ();t

Causes any characters added to the window to be put in standout mode on the terminal (if it has that
capability).

subwin (WINDOWT[win, int lines int cols int begin_yint begin_;

Create a new window withineslines andcols columns starting at positiolégin vy, begin x) inside

the windowwin. This means that any change made to either window in the area covered by the sub-
window will be made on both windowdegin y, begin x are specified relative to the overall screen,

not the relative (0, 0) afin. If eitherlinesor colsis 0 (zero), that dimension will be set tdNES -
begin_ y) or (COLS - beginx) respectively.

touchline (WINDOWILWin, int y, int startx int endy;

This function performs a function similar touchwin () on a single line. It marks the first change
for the given line to bstartx if it is before the current first change mark, and the last change mark is
set to beendxif it is currently less thaendx

Screen Package PS1:19-13

touchoverlap (WINDOW[Wwinl, WINDOW[Win2);

Touch the windowvin2 in the area which overlaps withinl. If they do not overlap, no changes are
made.

touchwin (WINDOWUIin);

Make it appear that the every location on the window has been changed. This is usually only needed
for refreshes with overlapping windows.

tstp ()

This function will save the current tty state and then put the process to sleep. When the process gets
restarted, it restores the saved tty state and thenweadfsesh (cursch; to redraw the screen.
Initscr () sets the signal SIGTSTP to trap to this routine.

unctrl (char Cth);t
Returns a string which is an ASCII representatiochofCharacters are 8 bits long.

unctrllen (char Cth);t
Returns the length of the ASCII representationhof

vwprintw (WINDOW(Win, const charlfmt, va_list ap;

Identical toprintw () except that it takes both a window specification and a pointer to a variable
length argument list.

vwscanw (WINDOWU[Win, const char'fmt, va_list ap;

Identical toscanw () except that it takes both a window specification and a pointer to a variable
length argument list.

waddbytes (WINDOWIWin, char [&tr, int len);

This function is the low level character output functidien characters of the strirgjr are output to
the current (y, x) co-ordinates position of the window specifiedioy

The following functions differ from the standard functions only in their specification of a window,
rather than the use of the default stdscr.

waddch (WINDOW[Win, char chy;
waddstr (WINDOWZIWwin, char Cktr);
wclear (WINDOWIWin);
wclrtobot (WINDOWIWin);
wclrtoeol (WINDOWIWin);
wdelch (WINDOWWin);
wdeleteln (WINDOWIin);
werase (WINDOWIin);

wgetch (WINDOWIin);

wgetstr (WINDOWZIWwin, char Cktr);
winch (WINDOW(Lwin); T

winsch (WINDOWILWwin, char g;

PS1:19-14 Screen Package

winsertin - (WINDOW[Win);
wmove(WINDOWTIWwin, int y, int, x");
wprintw (WINDOW([Win, char (Fmt, ...);
wrefresh (WINDOW(LWin);
wscanw(WINDOWLWwin, char (Fmt, ...);
wstandend (WINDOWI[Win);
wstandout (WINDOW[Win);

Screen Package PS1:19-15

1. Examples

Here we present a few examples of how to use the package. They attempt to be representative,
though not comprehensive. Further examples can be found in the games section of the source tree and in
various utilities that use the screen suchyas$at(1)

The following examples are intended to demonstrate the basic structure of a program using the pack-
age. An additional, more comprehensive, program can be found in the source codexanthkesubdi-
rectory.

1.1. Smple Character Output

This program demonstrates how to set up a window and output characters to it. Also, it demonstrates
how one might control the output to the window. If you run this program, you will get a demonstration of
the character output chracteristics discussed in thed@tharacter Output section.

#include <systypes.h>
#include <curses.h>
#include <stdio.h>
#include <signal.h>

#define YSIZE 10
#define XSIZE 20

int quit();
main()

inti, j, c;
size tlen;
char id[100];
FILE [Tp;
char [5;
initscr(); /OAlways call initscr() first]
signal(SIGINT, quit); /OMake sure wou have a “cleanup’in
crmode(); /OWe want cbreak modé
noecho(); /0O0We want to have control of chark
delwin(stdscr); /OCreate our own stdsdd
stdscr = newwin(YSIZE, XSIZE, 10, 35);
flushok(stdscr, TRUE); /OEnable flushing of stdoud
scrollok(stdscr, TRUE); /OEnable scrolling/
erase(); /Olnitially, clear the screefii
standout();
move(0,0);
while (1) {

¢ = getchar();

switch(c) {

case’ q’: /OQuiton g’

quit();
break;

PS1:19-16 Saeen Package Appendix A

case’s’”: /0Go into standout mode on §
standout();
break;
case’e’: /OEXit standout mode on “&f
standend();
break;
case’r’: /OForce a refresh on “rld
wrefresh(curscr);
break;
default: /OBy default output the charactér
addch(c);
refresh();
}
}
}
int
quit()
{
erase(); /OTerminate by erasing the scre@h
refresh();
endwin(); /OAlways end with endwin(Y
delwin(curscr); /OReturn storagél
delwin(stdscr);
putchar('\n);
exit(0);
}
1.2. Twinkle

This is a moderately simple program which prints patterns on the screen. It switches between pat-
terns of asterisks, putting them on one by one in random order, and then taking them off in the same fash-
ion. Itis more efficient to write this using only the motion optimization, as is demonstrated below.

#include <curses.h>
#include <signal.h>
/0

Othe idea for this program was a product of the imagination of
OKurt Schoens. Not responsible for minds lost or stolen.

v

define NCOLS 80

define NLINES 24

define MAXPATTERNS 4
typedef struict {

int Y, X;
} LOCS;

Screen Package Appendix A PS1:19-17

LOCS Layout[NCOLSINLINES]; /Ocurrent board layoutl
int Pattern, /Ocurrent pattern number
Numestars; /Onumber of stars in patterl
char Cgetenv();
int die();
main()
{
srand(getpid()); /Oinitialize random sequendé
initscr();
signal(SIGINT, die);
noecho();
nonl();

leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for (;;) {
makeboard(); /Omake the board setug
puton(T); /Oputon Us
puton(” "); /Ocover up with ~ "§1
}
}
/0

0On program exit, move the cursor to the lower left corner by

Odirect addressing, since current location is not guaranteed.

OWe lie and say we used to be at the upper right corner to guarantee
Oabsolute addressing.

o

die()

{
signal(SIGINT, SIGIGN);
mvcur(0, COLS- 1, LINES-1, 0);
endwin();
exit(0);

}

/0

[OMake the current board setup. It picks a random pattern and
Ocalls ison() to determine if the character is on that pattern

Uor not.

o

makeboard()

{ .
regint Y, X;
reg LOCS Op;

Pattern = rand() % MAXPATTERNS;

PS1:19-18

}

/a

Ip = Layout;
for (y = 0; y < NLINES; y++)
for (x = 0; x < NCOLS; x++)
if (ison(y, X)){

lp—>y =y;
[p—>x = X;

lp++;

}

Numestars = Ip- Layout;

OReturn TRUE if (y, X) is on the current pattern.

o
ison(y, x)
regint

}

puton(ch)
regchar

{

Y, X {
switch (Pattern)
case0: /Oalternating lined]
return !(y & 01);
casel: /Obox
if (x >= LINES && y >= NCOLS)
return FALSE;
if (y <3]|y >=NLINES- 3)
return TRUE;
return (x < 3 || x >= NCOLS 3);
case2: /Oholy pattern!d
retrn ((x +y) & 01);
case3: /Obar across centeld
return (y >= 9 && y <= 15);
}
/ONOTREACHED]
ch;
reg LOCS Op;
regint r
reg LOCS Cend;
LOCS temp;

end = &Layout[Numstars];

for (Ip = Layout; Ip < end; Ip++)
r =rand() % Numstars;
temp =0p;
Op = Layout][r];
Layout[r] = temp;

}

for (Ip = Layout; Ip < end; Ip++)
mvaddch(lp>y, Ip—>x, ch);
refresh();

Saeen Package Appendix A

Screen Package Appendix A PS1:19-19

PSD:19-2 Screen Package

Contents
L OVERIVIEW .ttt ettt ettt 4 et e ookt e o4k bt e e e s R R R et e e e a s et e e e e n b et e e s e e e e nmnenee e s e nree 3
I =14 0o T To] (o T YR P PP PPPURRTPP 3
1.2 Compiling APPHCALIONSeeiiiiiieeiie et e e e e e e e e e e e e e eaa 3
1.3 SCreen UPAtiNGcooceeeiieiiiiiae ettt e et e e e e e e e e bbb e b e e e e e e e e e e sammmnnnreneees 3
1.4 Naming CONVENLIONSuuuiiiiiiiiieaaa e iaiiiiieieeee e e e e e e s e s sibesteeeeeeae e e s e s ssnnnnsseeeeeaaeseanennnneens
2 VATTADIES ..o e emn e e e e e e 4
I 0 L T= Yo TSP UEURUURPRT R 4
L INIALZATION ..eeeeeeiiiieeee et e et e e b e e e s e e e s s nrneeeeaae 5
T2 O 1011 0] U | A PP P P PP UUUPRPRR 5
TG B 11 11 | TP URTRTUPPRPTIN 5
3.4 TEIMINATION ..eeiieei ittt ettt e et e e e ekt e e e ek bt e e e et b e e e e e e b be e e e e e anbeeeseennnres 5
4 Cursor Movement OPLIMIZALIONSuuiiiiiiiiiaia et e e e e e e e e e e s ebe b b e e e e e e e an 6
5 Character Output and Scrolling 6
6 Terminal State HandliNgc...uueiiiiiiiiiai et e s e+ 6
T SUDWINQOWS ...ttt ettt e e skttt e e s s e et e s sasb e et e e 4 st e e ¢ s £ £+ 6
8 THE FUNCHIONS ...ttt et e s sb bt e e meemnmmmmmnnen e 6
APPEIMAIX A ettt e e e e e e e e E e e e e e e b e e e e e e e E e e e e s e b re e e e e s nmmmemmnaee 15
e T 0] o] Lo PP 15
1.1 Simple Character OULPULooiiiiiiiiie ettt e e e e e e e e e e aebbeeeees 15.
L2 TWINKIE oo e e et et i 16

