
Bell Laboratories

Subject: Assembler Reference Manual
Case--- File-

date: November 2, 1997

from: Dennis M. Ritchie

TM:

MEMORANDUM FOR FILE

0. Introduction
This document describes the usage and input syntax of theUNIX PDP-11 assembleras. The details of the

PDP-11 are not described.
The input syntax of theUNIX assembler is generally similar to that of theDEC assemblerPAL-11R, although
its internal workings and output format are unrelated. It may be useful to read the publication
DEC-11-ASDB-D, which describesPAL-11R, although naturally one must use care in assuming that its rules
apply toas.
As is a rather ordinary assembler without macro capabilities. It produces an output file that contains relo-
cation information and a complete symbol table; thus the output is acceptable to theUNIX link-editor ld,
which may be used to combine the outputs of several assembler runs and to obtain object programs from
libraries. The output format has been designed so that if a program contains no unresolved references to
external symbols, it is executable without further processing.

1. Usage
as is used as follows:

as [−u] [−o output] file1 . . .

If the optional ‘‘−u’’ argument is given, all undefined symbols in the current assembly will be made undefined-exter-
nal. See the.globl directive below.
The other arguments name files which are concatenated and assembled. Thus programs may be written in
several pieces and assembled together.
The output of the assembler is by default placed on the filea.out in the current directory; the ‘‘−o’’ flag
causes the output to be placed on the named file. If there were no unresolved external ref%er%ences, and
no errors detected, the output file is marked executable; otherwise, if it is produced at all, it is made non-ex-
ecutable.

2. Lexical conventions
Assembler tokens include identifiers (alternatively, ‘‘symbols’’ or ‘‘names’’), temporary symbols, con-
stants, and operators.

2.1 Identifiers
An identifier consists of a sequence of alphanumeric characters (including period ‘‘. ’’, underscore ‘‘ ’’,
and tilde ‘‘˜’’ as alphanumeric) of which the first may not be numeric. Only the first eight characters are
significant. When a name begins with a tilde, the tilde is discarded and that occurrence of the identifier
generates a unique entry in the symbol table which can match no other occurrence of the identifier. This
feature is used by the C compiler to place names of local variables in the output symbol table without hav-
ing to worry about making them unique.

2.2 Temporary symbols
A temporary symbol consists of a digit followed by ‘‘f ’’ or ‘‘b’’. Temporary symbols are discussed fully
in §5.1.

-- --

- 2 -

2.3 Constants
An octal constant consists of a sequence of digits; ‘‘8’’ and ‘‘9’’ are taken to have octal value 10 and 11.
The constant is truncated to 16 bits and interpreted in two’s complement notation.
A decimal constant consists of a sequence of digits terminated by a decimal point ‘‘.’’. The magnitude of
the constant should be representable in 15 bits; i.e., be less than 32,768.
A single-character constant consists of a single quote ‘‘′ ’’ followed by anASCII character not a new-line.
Certain dual-character escape sequences are acceptable in place of theASCII character to represent new-line
and other non-graphics (seeString state%ments, §5.5). The constant’s value has the code for the given
character in the least significant byte of the word and is null-padded on the left.
A double-character constant consists of a double quote ‘‘ " ’’ followed by a pair ofASCII characters not in-
cluding new-line. Certain dual-character escape sequences are acceptable in place of either of theASCII

characters to represent new-line and other non-graphics (seeString state%ments, §5.5). The constant’s val-
ue has the code for the first given character in the least significant byte and that for the second character in
the most significant byte.

2.4 Operators
There are several single- and double-character operators; see §6.

2.5 Blanks
Blank and tab characters may be interspersed freely between tokens, but may not be used within tokens
(except character constants). A blank or tab is required to separate adjacent identifiers or constants not oth-
erwise separated.

2.6 Comments
The character ‘‘ / ’’ introduces a comment, which extends through the end of the line on which it appears.
Comments are ignored by the assembler.

3. Segments
Assembled code and data fall into three segments: the text segment, the data segment, and the bss segment.
The text segment is the one in which the assembler begins, and it is the one into which instructions are typi-
cally placed. TheUNIX system will, if desired, enforce the purity of the text segment of programs by trap-
ping write operations into it. Object programs produced by the assembler must be processed by the link-
editor ld (using its ‘‘−n’’ flag) if the text segment is to be write-protected. A single copy of the text segment
is shared among all processes executing such a program.
The data segment is available for placing data or instructions which will be modified during execution.
Anything which may go in the text segment may be put into the data segment. In programs with write-pro-
tected, sharable text segments, data segment contains the initialized but variable parts of a program. If the
text segment is not pure, the data segment begins immediately after the text segment; if the text segment is
pure, the data segment begins at the lowest 8K byte boundary after the text segment.
The bss segment may not contain any explicitly initialized code or data. The length of the bss segment
(like that of text or data) is determined by the high-water mark of the location counter within it. The bss
segment is actually an extension of the data segment and begins immediately after it. At the start of execu-
tion of a program, the bss segment is set to 0. Typically the bss segment is set up by state%ments exempli-
fied by

lab: . = .+10

The advantage in using the bss segment for storage that starts off empty is that the initialization information
need not be stored in the output file. See alsoLocation counterandAssignment state%mentsbelow.

4. The location counter
One special symbol, ‘‘. ’’, is the location counter. Its value at any time is the offset within the appropriate
segment of the start of the state%ment in which it appears. The location counter may be assigned to, with
the restriction that the current segment may not change; furthermore, the value of ‘‘. ’’ may not decrease. If
the effect of the assignment is to increase the value of ‘‘. ’’, the required number of null bytes are generated

-- --

- 3 -

(but seeSegmentsabove).

5. Statements
A source program is composed of a sequence ofstate%ments. Statements are separated either by new-
lines or by semicolons. There are five kinds of state%ments: null state%ments, expression state%ments, as-
signment state%ments, string state%ments, and keyword state%ments.
Any kind of state%ment may be preceded by one or more labels.

5.1 Labels
There are two kinds of label: name labels and numeric labels. A name label consists of a name followed
by a colon (:). The effect of a name label is to assign the current value and type of the location counter
‘‘ . ’’ to the name. An error is indicated in pass 1 if the name is already defined; an error is indicated in pass
2 if the ‘‘ . ’’ value assigned changes the definition of the label.
A numeric label consists of a digit0 to 9 followed by a colon (:). Such a label serves to define temporary
symbols of the form ‘‘nb’’ and ‘‘n f ’’, where n is the digit of the label. As in the case of name labels, a nu-
meric label assigns the current value and type of ‘‘. ’’ to the temporary symbol. However, sev eral numeric
labels with the same digit may be used within the same assembly. Ref%er%ences of the form ‘‘n f ’’ refer
to the first numeric label ‘‘n :’’ f orward from the ref%er%ence; ‘‘nb’’ symbols refer to the first ‘‘n :’’ label
backward from the ref%er%ence. This sort of temporary label was introduced by Knuth [The Art of Com-
puter Programming, Vol I: Fundamental Algorithms]. Such labels tend to conserve both the symbol table
space of the assembler and the inventive powers of the programmer.

5.2 Null state%ments
A null state%ment is an empty state%ment (which may, howev er, hav e labels). A null state%ment is ig-
nored by the assembler. Common examples of null state%ments are empty lines or lines containing only a
label.

5.3 Expression state%ments
An expression state%ment consists of an arithmetic expression not beginning with a keyword. The assem-
bler computes its (16-bit) value and places it in the output stream, together with the appropriate relocation
bits.

5.4 Assignment state%ments
An assignment state%ment consists of an identifier, an equals sign (=), and an expression. The value and
type of the expression are assigned to the identifier. It is not required that the type or value be the same in
pass 2 as in pass 1, nor is it an error to redefine any symbol by assignment.
Any external attribute of the expression is lost across an assignment. This means that it is not possible to
declare a global symbol by assigning to it, and that it is impossible to define a symbol to be offset from a
non-locally defined global symbol.
As mentioned, it is permissible to assign to the location counter ‘‘. ’’. It is required, however, that the type
of the expression assigned be of the same type as ‘‘. ’’, and it is forbidden to decrease the value of ‘‘. ’’. In
practice, the most common assignment to ‘‘. ’’ has the form ‘‘. = . +n’’ for some numbern; this has the ef-
fect of generatingn null bytes.

5.5 String state%ments
A string state%ment generates a sequence of bytes containingASCII characters. A string state%ment con-
sists of a left string quote ‘‘<’’ followed by a sequence ofASCII characters not including newline, followed
by a right string quote ‘‘>’’. Any of theASCII characters may be replaced by a two-character escape se-
quence to represent certain non-graphic characters, as follows:

\n NL (012)
\s SP (040)
\t HT (011)

-- --

- 4 -

\e EOT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \
\> >

The last two are included so that the escape character and the right string quote may be represented. The
same escape sequences may also be used within single- and double-character constants (see §2.3 above).

5.6 Keyword state%ments
Ke yword state%ments are numerically the most common type, since most machine instructions are of this
sort. A keyword state%ment begins with one of the many predefined keywords of the assembler; the syntax
of the remainder depends on the keyword. All the keywords are listed below with the syntax they require.

6. Expressions
An expression is a sequence of symbols representing a value. Its constituents are identifiers, constants,
temporary symbols, operators, and brackets. Each expression has a type.
All operators in expressions are fundamentally binary in nature; if an operand is missing on the left, a 0 of
absolute type is assumed. Arithmetic is two’s complement and has 16 bits of precision. All operators have
equal precedence, and expressions are evaluated strictly left to right except for the effect of brackets.

6.1 Expression operators
The operators are:
(blank) when there is no operand between operands, the effect is exactly the same as if a ‘‘+’’ had ap-

peared.
+ addition
− subtraction
* multiplication
\/ division (note that plain ‘‘ / ’’ starts a comment)
8 bitwiseand
 bitwiseor
\> logical right shift
\< logical left shift
% modulo
! a ! b is a or (not b); i.e., theor of the first operand and the one’s complement of the second; most

common use is as a unary.
ˆ result has the value of first operand and the type of the second; most often used to define new ma-

chine instructions with syntax identical to existing instructions.
Expressions may be grouped by use of square brackets ‘‘ [] ’’. (Round parentheses are reserved for ad-
dress modes.)

6.2 Types
The assembler deals with a number of types of expressions. Most types are attached to keywords and used
to select the routine which treats that keyword. The types likely to be met explicitly are:
undefined

Upon first encounter, each symbol is undefined. It may become undefined if it is assigned an un-
defined expression. It is an error to attempt to assemble an undefined expression in pass 2; in
pass 1, it is not (except that certain keywords require operands which are not undefined).

undefined external
A symbol which is declared.globl but not defined in the current assembly is an undefined exter-
nal. If such a symbol is declared, the link editorld must be used to load the assembler’s output
with another routine that defines the undefined reference.

-- --

- 5 -

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by any possible
future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text segment of the
program. If the assembler output is link-edited, its text symbols may change in value since the
program need not be the first in the link editor’s output. Most text symbols are defined by appear-
ing as labels. At the start of an assembly, the value of ‘‘. ’’ is text 0.

data The value of a data symbol is measured with respect to the origin of the data segment of a pro-
gram. Like text symbols, the value of a data symbol may change during a subsequent link-editor
run since previously loaded programs may have data segments. After the first.data statement,
the value of ‘‘. ’’ is data 0.

bss The value of a bss symbol is measured from the beginning of the bss segment of a program. Like
text and data symbols, the value of a bss symbol may change during a subsequent link-editor run,
since previously loaded programs may have bss segments. After the first.bssstatement, the value
of ‘‘ . ’’ is bss 0.

external absolute, text, data, or bss
symbols declared.globl but defined within an assembly as absolute, text, data, or bss symbols
may be used exactly as if they were not declared.globl; howev er, their value and type are avail-
able to the link editor so that the program may be loaded with others that reference these sym-
bols.

register
The symbols

r0 . . . r5
fr0 . . . fr5
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be used
to refer to the six general-purpose, six floating-point, and the 2 special-purpose machine
registers. The behavior of the floating register names is identical to that of the correspond-
ing general register names; the former are pro vided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select the routine which pro-
cesses the associated keyword statement. The behavior of such symbols when not used as
keywords is the same as if they were absolute.

6.3 Type propagation in expressions
When operands are combined by expression operators, the result has a type which depends on the types of
the operands and on the operator. The rules involved are complex to state but were intended to be sensible
and predictable. For purposes of expression evaluation the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If both
operands are absolute, the result is absolute. If an absolute is combined with one of the ‘‘other types’’ men-
tioned above, or with a register expression, the result has the register or other type. As a consequence, one
can refer to r3 as ‘‘r0+3’’. If two operands of ‘‘other type’’ are combined, the result has the numerically
larger type An ‘‘other type’’ combined with an explicitly discussed type other than absolute acts like an ab-
solute.

-- --

- 6 -

Further rules applying to particular operators are:
+If one operand is text-, data-, or bss-segment relocatable, or is an undefined external, the result has the
postulated type and the other operand must be absolute.
−If the first operand is a relocatable text-, data-, or bss-segment symbol, the second operand may be abso-
lute (in which case the result has the type of the first operand); or the second operand may have the same
type as the first (in which case the result is absolute). If the first operand is external undefined, the second
must be absolute. All other combinations are illegal.
ˆThis operator follows no other rule than that the result has the value of the first operand and the type of the
second.
others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations
The keywords listed below introduce statements that generate data in unusual forms or influence the later
operations of the assembler. The metanotation

[stuff] . . .

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are literals, italic
words are substitutable.

7.1 .byte expression[, expression] . . .
Theexpressions in the comma-separated list are truncated to 8 bits and assembled in successive bytes. The
expressions must be absolute. This statement and the string statement above are the only ones that assem-
ble data one byte at at time.

7.2 .even
If the location counter ‘‘. ’’ is odd, it is advanced by one so the next statement will be assembled at a word
boundary.

7.3 .if expression
Theexpressionmust be absolute and defined in pass 1. If its value is nonzero, the.if is ignored; if zero, the
statements between the.if and the matching.endif (below) are ignored..if may be nested. The effect of.if
cannot extend beyond the end of the input file in which it appears. (The statements are not totally ignored,
in the following sense:.ifs and.endifs are scanned for, and moreover all names are entered in the symbol
table. Thus names occurring only inside an.if will show up as undefined if the symbol table is listed.)

7.4 .endif
This statement marks the end of a conditionally-assembled section of code. See.if above.

7.5 .globl name [, name] . . .
This statement makes thenamesexternal. If they are otherwise defined (by assignment or appearance as a
label) they act within the assembly exactly as if the.globl statement were not given; however, the link edi-
tor ld may be used to combine this routine with other routines that refer these symbols.
Conversely, if the given symbols are not defined within the current assembly, the link editor can combine
the output of this assembly with that of others which define the symbols. As discussed in §1, it is possible
to force the assembler to make all otherwise undefined symbols external.

7.6 .text

7.7 .data

-- --

- 7 -

7.8 .bss
These three pseudo-operations cause the assembler to begin assembling into the text, data, or bss segment
respectively. Assembly starts in the text segment. It is forbidden to assemble any code or data into the bss
segment, but symbols may be defined and ‘‘. ’’ moved about by assignment.

7.9 .comm name , expression
Provided thenameis not defined elsewhere, this statement is equivalent to

.globl name
name = expression ˆ name

That is, the type ofnameis ‘‘undefined external’’, and its value isexpression. In fact thenamebehaves in
the current assembly just like an undefined external. However, the link-editorld has been special-cased so
that all external symbols which are not otherwise defined, and which have a non-zero value, are defined to
lie in the bss segment, and enough space is left after the symbol to holdexpressionbytes. All symbols
which become defined in this way are located before all the explicitly defined bss-segment locations.

8. Machine instructions
Because of the rather complicated instruction and addressing structure of thePDP-11, the syntax of ma-
chine instruction statements is varied. Although the following sections give the syntax in detail, the ma-
chine handbooks should be consulted on the semantics.

8.1 Sources and Destinations
The syntax of general source and destination addresses is the same. Each must have one of the following
forms, wherereg is a register symbol, andexpr is any sort of expression:

syntax words mode

reg 0 00+reg
(reg) + 0 20+reg
− (reg) 0 40+reg
expr(reg) 1 60+reg
(reg) 0 10+reg
* reg 0 10+reg
* (reg) + 0 30+reg
* − (reg) 0 50+reg
* (reg) 1 70+reg
* expr(reg) 1 70+reg
expr 1 67
$expr 1 27
* expr 1 77
* $ expr 1 37

Thewordscolumn gives the number of address words generated; themodecolumn gives the octal address-
mode number. The syntax of the address forms is identical to that inDEC assemblers, except that ‘‘*’’ has
been substituted for ‘‘@’’ and ‘‘$’’ for ‘‘#’’; theUNIX typing conventions make ‘‘@’’ and ‘‘#’’ rather incon-
venient.
Notice that mode ‘‘*reg’’ is identical to ‘‘(reg)’’; that ‘‘*(reg)’’ generates an index word (namely, 0); and
that addresses consisting of an unadorned expression are assembled as pc-relative references independent of
the type of the expression. To force a non-relative reference, the form ‘‘*$expr’’ can be used, but notice
that further indirection is impossible.

-- --

- 8 -

8.3 Simple machine instructions
The following instructions are defined as absolute symbols:

clc
clv
clz
cln
sec
sev
sez
sen

They therefore require no special syntax. ThePDP-11 hardware allows more than one of the ‘‘clear’’
class, or alternatively more than one of the ‘‘set’’ class to be or-ed together; this may be expressed as
follows:

clc clv

8.4 Branch
The following instructions take an expression as operand. The expression must lie in the same segment as
the reference, cannot be undefined-external, and its value cannot differ from the current location of ‘‘. ’’ by
more than 254 bytes:

br blos
bne bvc
beq bvs
bge bhis
blt bec (= bcc)
bgt bcc
ble blo
bpl bcs
bmi bes (= bcs)
bhi

bes(‘‘branch on error set’’) andbec (‘‘branch on error clear’’) are intended to test the error bit returned by
system calls (which is the c-bit).

8.5 Extended branch instructions
The following symbols are followed by an expression representing an address in the same segment as ‘‘. ’’.
If the target address is close enough, a branch-type instruction is generated; if the address is too far away, a
jmp will be used.

jbr jlos
jne jvc
jeq jvs
jge jhis
jlt jec
jgt jcc
jle jlo
jpl jcs
jmi jes
jhi

jbr turns into a plainjmp if its target is too remote; the others (whose names are contructed by replacing
the ‘‘b’’ in the branch instruction’s name by ‘‘j’’) turn into the converse branch over ajmp to the target ad-
dress.

-- --

- 9 -

8.6 Single operand instructions
The following symbols are names of single-operand machine instructions. The form of address expected is
discussed in §8.1 above.

clr sbcb
clrb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adcb tst
sbc tstb

8.7 Double operand instructions
The following instructions take a general source and destination (§8.1), separated by a comma, as
operands.

mov
movb
cmp
cmpb
bit
bitb
bic
bicb
bis
bisb
add
sub

8.8 Miscellaneous instructions
The following instructions have more specialized syntax. Herereg is a register name,src anddsta general
source or destination (§8.1), andexpr is an expression:

jsr reg,dst
rts reg
sys expr
ash src , reg (or, als)
ashc src , reg (or, alsc)
mul src , reg (or, mpy)
div src , reg (or, dvd)
xor reg , dst
sxt dst
mark expr
sob reg , expr

sys is another name for thetrap instruction. It is used to code system calls. Its operand is required to be
expressible in 6 bits. The expression inmark must be expressible in six bits, and the expression insob
must be in the same segment as ‘‘. ’’, must not be external-undefined, must be less than ‘‘. ’’, and must be
within 510 bytes of ‘‘. ’’.

-- --

- 10 -

8.9 Floating-point unit instructions
The following floating-point operations are defined, with syntax as indicated:

cfcc
setf
setd
seti
setl
clrf fdst
negf fdst
absf fdst
tstf fsrc
movf fsrc, freg (= ldf)
movf freg , fdst (= stf)
movif src, freg (= ldcif)
movfi freg , dst (= stcfi)
movof fsrc, freg (= ldcdf)
movfo freg , fdst (= stcfd)
movie src, freg (= ldexp)
movei freg , dst (= stexp)
addf fsrc, freg
subf fsrc, freg
mulf fsrc, freg
divf fsrc, freg
cmpf fsrc, freg
modf fsrc, freg
ldfps src
stfps dst
stst dst

fsrc, fdst, andfreg mean floating-point source, destination, and register respectively. Their syntax is identi-
cal to that for their non-floating counterparts, but note that only floating registers 0-3 can be afreg.
The names of several of the operations have been changed to bring out an analogy with certain fixed-point
instructions. The only strange case ismovf, which turns into eitherstf or ldf depending respectively on
whether its first operand is or is not a register. Warning:ldf sets the floating condition codes,stf does not.

9. Other symbols

9.1 . .
The symbol ‘‘. . ’’ is the relocation counter. Just before each assembled word is placed in the output
stream, the current value of this symbol is added to the word if the word refers to a text, data or bss segment
location. If the output word is a pc-relative address word that refers to an absolute location, the value of
‘‘ . . ’’ is subtracted.
Thus the value of ‘‘. . ’’ can be taken to mean the starting memory location of the program. The initial val-
ue of ‘‘ . . ’’ is 0.
The value of ‘‘. . ’’ may be changed by assignment. Such a course of action is sometimes necessary, but
the consequences should be carefully thought out. It is particularly ticklish to change ‘‘. . ’’ midway in an
assembly or to do so in a program which will be treated by the loader, which has its own notions of ‘‘. . ’’.

9.2 System calls
System call names are not predefined. They may be found in the file/usr/include/sys.s

-- --

- 11 -

10. Diagnostics
When an input file cannot be read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is typed out together with the line
number and the file name in which it occurred. Errors in pass 1 cause cancellation of pass 2. The possible
errors are:

) parentheses error
] parentheses error
> string not terminated properly
* indirection (*) used illegally
. illegal assignment to ‘‘. ’’
A error in address
B branch address is odd or too remote
E error in expression
F error in local (‘‘f ’’ or ‘‘b’’) type symbol
G garbage (unknown) character
I end of file inside an.if
M multiply defined symbol as label
O word quantity assembled at odd address
P phase error— ‘‘. ’’ different in pass 1 and 2
R relocation error
U undefined symbol
X syntax error

