
Bell Laboratories

Subject: A System for Typesetting Mathematics
Case--- File-

date: November 2, 1997

from: Brian W. Kernighan and Lorinda L.

TM:

MEMORANDUM FOR FILE

1. Introduction
‘‘Mathematics is known in the trade asdifficult, or
penalty, copybecause it is slower, more difficult, and
more expensive to set in type than any other kind of
copy normally occurring in books and journals.’’ [1]
One difficulty with mathematical text is the multiplic-
ity of characters, sizes, and fonts. An expression such
as

x−>π /2
lim (tan x)sin 2x = 1

requires an intimate mixture of roman, italic and greek
letters, in three sizes, and a special character or two.
(‘‘Requires’’ is perhaps the wrong word, but mathemat-
ics has its own typographical conventions which are
quite different from those of ordinary text.) Typeset-
ting such an expression by traditional methods is still
an essentially manual operation.
A second difficulty is the two dimensional character of
mathematics, which the superscript and limits in the
preceding example showed in its simplest form. This is
carried further by

a0 +
b1

a1 +
b2

a2 +
b3

a3 + . . .

and still further by

∫ dx

aemx − be−mx
=

1

2m√ ab
log

√ aemx − √ b

√ aemx + √ b
1

m√ ab
tanh−1(

√ a

√ b
emx)

−1

m√ ab
coth−1(

√ a

√ b
emx)

These examples also show line-drawing, built-up char-
acters like braces and radicals, and a spectrum of posi-
tioning problems. (Section 6 shows what a user has to
type to produce these on our system.)

2. Photocomposition
Photocomposition techniques can be used to solve
some of the problems of typesetting mathematics. A
phototypesetter is a device which exposes a piece of
photographic paper or film, placing characters wherever
they are wanted. The Graphic Systems phototypeset-

ter[2] on theUNIX operating system[3] works by shin-
ing light through a character stencil. The character is
made the right size by lenses, and the light beam
directed by fiber optics to the desired place on a piece
of photographic paper. The exposed paper is developed
and typically used in some form of photo-offset repro-
duction.
On UNIX, the phototypesetter is driven by a formatting
program calledTROFF [4]. TROFF was designed for
setting running text. It also provides all of the facilities
that one needs for doing mathematics, such as arbitrary
horizontal and vertical motions, line-drawing, size
changing, but the syntax for describing these special
operations is difficult to learn, and difficult even for
experienced users to type correctly.
For this reason we decided to useTROFF as an

‘‘assembly language,’’ by designing a language for
describing mathematical expressions, and compiling it
into TROFF.

3. Language Design
The fundamental principle upon which we based our
language design is that the language should be easy to
use by people (for example, secretaries) who know nei-
ther mathematics nor typesetting.
This principle implies several things. First, ‘‘normal’’
mathematical conventions about operator precedence,
parentheses, and the like cannot be used, for to give
special meaning to such characters means that the user
has to understand what he or she is typing. Thus the
language should not assume, for instance, that paren-
theses are always balanced, for they are not in the half-
open interval (a, b]. Nor should it assume that that
√ a + b can be replaced by (a + b)

1⁄2, or that 1/(1− x) is

better written as
1

1 − x
(or vice versa).

Second, there should be relatively few rules, keywords,
special symbols and operators, and the like. This keeps
the language easy to learn and remember. Furthermore,
there should be few exceptions to the rules that do
exist: if something works in one situation, it should
work everywhere. If a variable can have a subscript,
then a subscript can have a subscript, and so on without
limit.
Third, ‘‘standard’’ things should happen automatically.
Someone who types ‘‘x=y+z+1’’ should get
‘‘ x = y + z + 1’’. Subscripts and superscripts should

-- --

- 2 -

automatically be printed in an appropriately smaller
size, with no special intervention. Fraction bars have to
be made the right length and positioned at the right
height. And so on. Indeed a mechanism for overriding
default actions has to exist, but its application is the
exception, not the rule.
We assume that the typist has a reasonable picture (a
two-dimensional representation) of the desired final
form, as might be handwritten by the author of a paper.
We also assume that the input is typed on a computer
terminal much like an ordinary typewriter. This implies
an input alphabet of perhaps 100 characters, none of
them special.
A secondary, but still important, goal in our design was
that the system should be easy to implement, since nei-
ther of the authors had any desire to make a long-term
project of it. Since our design was not firm, it was also
necessary that the program be easy to change at any
time.
To make the program easy to build and to change, and
to guarantee regularity (‘‘it should work everywhere’’),
the language is defined by a context-free grammar,
described in Section 5. The compiler for the language
was built using a compiler-compiler.
A priori, the grammar/compiler-compiler approach
seemed the right thing to do. Our subsequent experi-
ence leads us to believe that any other course would
have been folly. The original language was designed in
a few days. Construction of a working system suffi-
cient to try significant examples required perhaps a per-
son-month. Since then, we have spent a modest
amount of additional time over sev eral years tuning,
adding facilities, and occasionally changing the lan-
guage as users make criticisms and suggestions.
We also decided quite early that we would letTROFF
do our work for us whenever possible.TROFFis quite a
powerful program, with a macro facility, text and arith-
metic variables, numerical computation and testing, and
conditional branching. Thus we have been able to
avoid writing a lot of mundane but tricky software. For
example, we store no text strings, but simply pass them
on toTROFF. Thus we avoid having to write a storage
management package. Furthermore, we have been able
to isolate ourselves from most details of the particular
device and character set currently in use. For example,
we letTROFFcompute the widths of all strings of char-
acters; we need know nothing about them.
A third design goal is special to our environment.
Since our program is only useful for typesetting mathe-
matics, it is necessary that it interface cleanly with the
underlying typesetting language for the benefit of users
who want to set intermingled mathematics and text (the
usual case). The standard mode of operation is that
when a document is typed, mathematical expressions
are input as part of the text, but marked by user settable
delimiters. The program reads this input and treats as
comments those things which are not mathematics,
simply passing them through untouched. At the same
time it converts the mathematical input into the neces-

saryTROFFcommands. The resulting ioutput is passed
directly toTROFFwhere the comments and the mathe-
matical parts both become text and/orTROFF com-
mands.

4. The Language
We will not try to describe the language precisely here;
interested readers may refer to the appendix for more
details. Throughout this section, we will write expres-
sions exactly as they are handed to the typesetting pro-
gram (hereinafter called‘‘EQN’’), except that we won’t
show the delimiters that the user types to mark the
beginning and end of the expression. The interface
betweenEQN andTROFFis described at the end of this
section.
As we said, typing x=y+z+1 should produce
x = y + z + 1, and indeed it does. Variables are made
italic, operators and digits become roman, and normal
spacings between letters and operators are altered
slightly to give a more pleasing appearance.
Input is free-form. Spaces and new lines in the input
are used byEQN to separate pieces of the input; they
are not used to create space in the output. Thus

x = y
+ z + 1

also givesx = y + z + 1. Free-form input is easier to
type initially; subsequent editing is also easier, for an
expression may be typed as many short lines.
Extra white space can be forced into the output by sev-
eral characters of various sizes. A tilde ‘‘ ˜ ’’ giv es a
space equal to the normal word spacing in text; a cir-
cumflex giv es half this much, and a tab charcter spaces
to the next tab stop.
Spaces (or tildes, etc.) also serve to delimit pieces of
the input. For example, to get

f (t) = 2π ∫ sin(ω t)dt

we write

f(t) = 2 pi int sin (omega t)dt

Here spaces arenecessaryin the input to indicate that
sin, pi, int,andomegaare special, and potentially worth
special treatment.EQN looks up each such string of
characters in a table, and if appropriate gives it a trans-
lation. In this case,pi and omegabecome their greek
equivalents,int becomes the integral sign (which must
be moved down and enlarged so it looks ‘‘right’’), and
sin is made roman, following conventional mathemati-
cal practice. Parentheses, digits and operators are auto-
matically made roman wherever found.
Fractions are specified with the keywordover:

a+b over c+d+e = 1

produces

a + b

c + d + e
= 1

-- --

- 3 -

Similarly, subscripts and superscripts are introduced
by the keywordssubandsup:

x2 + y2 = z2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2’s are necessary to mark the end
of the superscripts; similarly the keywordsuphas to be
marked off by spaces or some equivalent delimiter.
The return to the proper baseline is automatic. Multiple
levels of subscripts or superscripts are of course
allowed: ‘‘x sup y sup z’’ isxyz

. The construct ‘‘some-
thing subsomethingsupsomething’’ is recognized as a
special case, so ‘‘x sub i sup 2’’ isx2

i instead ofxi
2.

More complicated expressions can now be formed
with these primitives:

∂2 f

∂x2
=

x2

a2
+

y2

b2

is produced by

{partial sup 2 f} over {partial x sup 2} =
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces {} are used to group objects together; in this
case they indicate unambiguously what goes over what
on the left-hand side of the expression. The language
defines the precedence ofsup to be higher than that of
over,so no braces are needed to get the correct associa-
tion on the right side. Braces can always be used when
in doubt about precedence.
The braces convention is an example of the power of
using a recursive grammar to define the language. It is
part of the language that if a construct can appear in
some context, thenany expressionin braces can also
occur in that context.
There is asqrt operator for making square roots of the
appropriate size: ‘‘sqrt a+b’’ produces√ a + b, and

x = {−b +− sqrt{b sup 2−4ac}} over 2a

is

x =
−b ± √ b2 − 4ac

2a

Since large radicals look poor on our typesetter,sqrt is
not useful for tall expressions.
Limits on summations, integrals and similar construc-
tions are specified with the keywordsfrom and to. To
get

∞

i=0
Σ xi → 0

we need only type

sum from i=0 to inf x sub i−> 0

Centering and making theΣ big enough and the limits
smaller are all automatic. Thefrom and to parts are
both optional, and the central part (e.g., theΣ) can in
fact be anything:

lim from {x −> pi /2} (tan˜x) = inf

is

x→π /2
lim (tan x) = ∞

Again, the braces indicate just what goes into thefrom
part.
There is a facility for making braces, brackets, paren-
theses, and vertical bars of the right height, using the
keywordsleft andright:

left [x+y over 2a right]˜=˜1

makes

x + y

2a

= 1

A left need not have a correspondingright, as we shall
see in the next example. Any characters may follow
left and right, but generally only various parentheses
and bars are meaningful.
Big brackets, etc., are often used with another facility,
calledpiles, which make vertical piles of objects. For
example, to get

sign(x) ≡

1

0

−1

if

if

if

x > 0

x = 0

x < 0

we can type

sign (x) ˜==˜ left {
rpile {1 above 0 above−1}
˜˜lpile {if above if above if}
˜˜lpile {x>0 above x=0 above x<0}

The construction ‘‘left {’’ makes a left brace big
enough to enclose the ‘‘rpile {...}’’, which is a right-
justified pile of ‘‘above ... above ...’’. ‘‘lpile’’ makes a
left-justified pile. There are also centered piles.
Because of the recursive language definition, a pile can
contain any number of elements; any element of a pile
can of course contain piles.
AlthoughEQN makes a valiant attempt to use the right

sizes and fonts, there are times when the default
assumptions are simply not what is wanted. For
instance the italicsign in the previous example would
conventionally be in roman. Slides and transparencies
often require larger characters than normal text. Thus
we also provide size and font changing commands:
‘‘size 12 bold {A˜x˜=˜y}’’ will produce A x = y.
Sizeis followed by a number representing a character
size in points. (One point is 1/72 inch; this paper is set
in 9 point type.)
If necessary, an input string can be quoted in "...",
which turns off grammatical significance, and any font
or spacing changes that might otherwise be done on it.
Thus we can say

lim˜ roman "sup" ˜x sub n = 0

to ensure that the supremum doesn’t become a super-
script:

-- --

- 4 -

lim sup xn = 0

Diacritical marks, long a problem in traditional type-
setting, are straightforward:

ẋ + x̂ + ỹ + X̂ + Ÿ = z + Z

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilities for globally changing default
sizes and fonts, for example for making viewgraphs or
for setting chemical equations. The language allows
for matrices, and for lining up equations at the same
horizontal position.
Finally, there is a definition facility, so a user can say

define name "..."

at any time in the document; henceforth, any occur-
rence of the token ‘‘name’’ in an expression will be
expanded into whatever was inside the double quotes in
its definition. This lets users tailor the language to their
own specifications, for it is quite possible to redefine
keywords likesupor over. Section 6 shows an example
of definitions.
TheEQN preprocessor reads intermixed text and equa-
tions, and passes its output toTROFF.SinceTROFFuses
lines beginning with a period as control words (e.g.,
‘‘.ce’’ means ‘‘center the next output line’’),EQN uses
the sequence ‘‘.EQ’’ to mark the beginning of an equa-
tion and ‘‘.EN’’ to mark the end. The ‘‘.EQ’’ and
‘‘.EN’’ are passed through toTROFFuntouched, so they
can also be used by a knowledgeable user to center
equations, number them automatically, etc. By default,
however, ‘‘.EQ’’ and ‘‘.EN’’ are simply ignored by
TROFF, so by default equations are printed in-line.
‘‘.EQ’’ and ‘‘.EN’’ can be supplemented byTROFF

commands as desired; for example, a centered display
equation can be produced with the input:

.ce

.EQ
x sub i = y sub i ...
.EN

Since it is tedious to type ‘‘.EQ’’ and ‘‘.EN’’ around
very short expressions (single letters, for instance), the
user can also define two characters to serve as the left
and right delimiters of expressions. These characters
are recognized anywhere in subsequent text. For exam-
ple if the left and right delimiters have both been set to
‘‘#’’, the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let xi , y andα be positive

Running a preprocessor is strikingly easy onUNIX. To
typeset text stored in file ‘‘f ’’, one issues the command:

eqn f troff

The vertical bar connects the output of one process
(EQN) to the input of another(TROFF).

5. Language Theory
The basic structure of the language is not a particularly
original one. Equations are pictured as a set of
‘‘boxes,’’ pieced together in various ways. For exam-
ple, something with a subscript is just a box followed
by another box moved downward and shrunk by an
appropriate amount. A fraction is just a box centered
above another box, at the right altitude, with a line of
correct length drawn between them.
The grammar for the language is shown below. For
purposes of exposition, we have collapsed some pro-
ductions. In the original grammar, there are about 70
productions, but many of these are simple ones used
only to guarantee that some keyword is recognized
early enough in the parsing process. Symbols in capital
letters are terminal symbols; lower case symbols are
non-terminals, i.e., syntactic categories. The vertical
bar indicates an alternative; the brackets [] indicate
optional material. ATEXT is a string of non-blank
characters or any string inside double quotes; the other
terminal symbols represent literal occurrences of the
corresponding keyword.

eqn : box eqn box

box : text
 { eqn }
 box OVER box
 SQRT box
 box SUB box box SUP box
 [L C R]PILE { list }
 LEFT text eqn [RIGHT text]
 box [FROM box] [TO box]
 SIZE text box
 [ROMAN BOLD ITALIC] box
 box [HAT BAR DOT DOTDOT TILDE]
 DEFINE text text

list : eqn list ABOVE eqn

text : TEXT

The grammar makes it obvious why there are few
exceptions. For example, the observation that some-
thing can be replaced by a more complicated something
in braces is implicit in the productions:

eqn : box eqn box
box : text { eqn }

Anywhere a single character could be used,any legal
construction can be used.
Clearly, our grammar is highly ambiguous. What, for
instance, do we do with the input

a over b over c ?

Is it

{a over b} over c

or is it

-- --

- 5 -

a over {b over c} ?

To answer questions like this, the grammar is supple-
mented with a small set of rules that describe the prece-
dence and associativity of operators. In particular, we
specify (more or less arbitrarily) thatoverassociates to
the left, so the first alternative above isthe one chosen.
On the other hand,sub and sup bind to the right,
because this is closer to standard mathematical practice.

That is, we assumexab
is x(ab), not (xa)b.

The precedence rules resolve the ambiguity in a con-
struction like

a sup 2 over b

We definesupto have a higher precedence thanover,so

this construction is parsed as
a2

b
instead ofa

2

b .

Naturally, a user can always force a particular parsing
by placing braces around expressions.
The ambiguous grammar approach seems to be quite
useful. The grammar we use is small enough to be eas-
ily understood, for it contains none of the productions
that would be normally used for resolving ambiguity.
Instead the supplemental information about precedence
and associativity (also small enough to be understood)
provides the compiler-compiler with the information it
needs to make a fast, deterministic parser for the spe-
cific language we want. When the language is supple-
mented by the disambiguating rules, it is in factLR(1)
and thus easy to parse[5].
The output code is generated as the input is scanned.
Any time a production of the grammar is recognized,
(potentially) someTROFF commands are output. For
example, when the lexical analyzer reports that it has
found aTEXT (i.e., a string of contiguous characters),
we have recognized the production:

text : TEXT

The translation of this is simple. We generate a local
name for the string, then hand the name and the string
to TROFF,and letTROFF perform the storage manage-
ment. All we save is the name of the string, its height,
and its baseline.
As another example, the translation associated with the
production

box : box OVER box

is:

Width of output box =
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box =
slightly more than height of bottom input box

String describing output box =
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy string for bottom box);
move up; move left enough to center top box;
draw top box (i.e., copy string for top box);
move downand left; draw line full width;
return to proper base line.

Most of the other productions have equally simple
semantic actions. Picturing the output as a set of prop-
erly placed boxes makes the right sequence of position-
ing commands quite obvious. The main difficulty is in
finding the right numbers to use for esthetically pleas-
ing positioning.
With a grammar, it is usually clear how to extend the
language. For instance, one of our users suggested a
TENSORoperator, to make constructions like

l
m

k

n
T

j

i

Grammatically, this is easy: it is sufficient to add a pro-
duction like

box : TENSOR { list }

Semantically, we need only juggle the boxes to the
right places.

6. Experience
There are really three aspects of interest—how well

EQN sets mathematics, how well it satisfies its goal of
being ‘‘easy to use,’’ and how easy it was to build.
The first question is easily addressed. This entire
paper has been set by the program. Readers can judge
for themselves whether it is good enough for their pur-
poses. One of our users commented that although the
output is not as good as the best hand-set material, it is
still better than average, and much better than the
worst. In any case, who cares? Printed books cannot
compete with the birds and flowers of illuminated
manuscripts on esthetic grounds, either, but they hav e
some clear economic advantages.
Some of the deficiencies in the output could be cleaned
up with more work on our part. For example, we some-
times leave too much space between a roman letter and
an italic one. If we were willing to keep track of the
fonts involved, we could do this better more of the
time.
Some other weaknesses are inherent in our output
device. It is hard, for instance, to draw a line of an
arbitrary length without getting a perceptible overstrike
at one end.
As to ease of use, at the time of writing, the system has
been used by two distinct groups. One user population

-- --

- 6 -

consists of mathematicians, chemists, physicists, and
computer scientists. Their typical reaction has been
something like:
(1)It’s easy to write, although I make the following
mistakes...
(2)How do I do...?
(3)It botches the following things.... Why don’t you fix
them?
(4)You really need the following features...

The learning time is short. A few minutes gives the
general flavor, and typing a page or two of a paper gen-
erally uncovers most of the misconceptions about how
it works.
The second user group is much larger, the secretaries
and mathematical typists who were the original target
of the system. They tend to be enthusiastic converts.
They find the language easy to learn (most are largely
self-taught), and have little trouble producing the out-
put they want. They are of course less critical of the
esthetics of their output than users trained in mathemat-
ics. After a transition period, most find using a com-
puter more interesting than a regular typewriter.
The main difficulty that users have seems to be
remembering that a blank is a delimiter; even experi-
enced users use blanks where they shouldn’t and omit
them when they are needed. A common instance is
typing

f(x sub i)

which produces

f (xi)

instead of

f (xi)

Since theEQN language knows no mathematics, it can-
not deduce that the right parenthesis is not part of the
subscript.
The language is somewhat prolix, but this doesn’t
seem excessive considering how much is being done,
and it is certainly more compact than the corresponding
TROFFcommands. For example, here is the source for
the continued fraction expression in Section 1 of this
paper:

a sub 0 + b sub 1 over
{a sub 1 + b sub 2 over
{a sub 2 + b sub 3 over
{a sub 3 + ... }}}

This is the input for the large integral of Section 1;
notice the use of definitions:

define emx "{e sup mx}"
define mab "{m sqrt ab}"
define sa "{sqrt a}"
define sb "{sqrt b}"
int dx over {a emx− be sup−mx} ˜=˜
left { lpile {

1 over {2 mab} ˜log˜
{sa emx− sb} over {sa emx + sb}

above
1 over mab ˜ tanh sup−1 (sa over sb emx)

above
−1 over mab ˜ coth sup−1 (sa over sb emx)

}

As to ease of construction, we have already mentioned
that there are really only a few person-months invested.
Much of this time has gone into two things—fine-tun-
ing (what is the most esthetically pleasing space to use
between the numerator and denominator of a fraction?),
and changing things found deficient by our users
(shouldn’t a tilde be a delimiter?).
The program consists of a number of small, essentially
unconnected modules for code generation, a simple lex-
ical analyzer, a canned parser which we did not have to
write, and some miscellany associated with input files
and the macro facility. The program is now about 1600
lines of C [6], a high-level language reminiscent of
BCPL. About 20 percent of these lines are ‘‘print’’
statements, generating the output code.
The semantic routines that generate the actualTROFF
commands can be changed to accommodate other for-
matting languages and devices. For example, in less
than 24 hours, one of us changed the entire semantic
package to driveNROFF, a variant ofTROFF, for type-
setting mathematics on teletypewriter devices capable
of reverse line motions. Since many potential users do
not have access to a typesetter, but still have to type
mathematics, this provides a way to get a typed version
of the final output which is close enough for debugging
purposes, and sometimes even for ultimate use.

7. Conclusions
We think we have shown that it is possible to do
acceptably good typesetting of mathematics on a photo-
typesetter, with an input language that is easy to learn
and use and that satisfies many users’ demands. Such a
package can be implemented in short order, giv en a
compiler-compiler and a decent typesetting program
underneath.
Defining a language, and building a compiler for it
with a compiler-compiler seems like the only sensible
way to do business. Our experience with the use of a
grammar and a compiler-compiler has been uniformly
favorable. If we had written everything into code
directly, we would have been locked into our original
design. Furthermore, we would have nev er been sure
where the exceptions and special cases were. But
because we have a grammar, we can change our minds
readily and still be reasonably sure that if a construc-
tion works in one place it will work everywhere.

-- --

- 7 -

Acknowledgements
We are deeply indebted to J. F. Ossanna, the author of

TROFF, for his willingness to modifyTROFF to make
our task easier and for his continuous assistance during
the development of our program. We are also grateful
to A. V. Aho for help with language theory, to S. C.
Johnson for aid with the compiler-compiler, and to our
early users A. V. Aho, S. I. Feldman, S. C. Johnson, R.
W. Hamming, and M. D. McIlroy for their constructive
criticisms.

References
[1]A Manual of Style,12th Edition. University of
Chicago Press, 1969. p 295.
[2]Model C/A/T Phototypesetter.Graphic Systems,
Inc., Hudson, N. H.
[3]Ritchie, D. M., and Thompson, K. L., ‘‘The UNIX
time-sharing system.’’Comm. ACM 17,7 (July 1974),
365-375.
[4]Ossanna, J. F., TROFF User’s Manual. Bell Labora-
tories Computing Science Technical Report 54, 1977.
[5]Aho, A. V., and Johnson, S. C., ‘‘LR Parsing.’’
Comp. Surv. 6,2 (June 1974), 99-124.
[6]B. W. Kernighan and D. M. Ritchie,The C Program-
ming Language. Prentice-Hall, Inc., 1978.
\$3\$1\s+2\$2

Typesetting Mathematics — User’s Guide
(Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user’s guide for a system for type-
setting mathematics, using the phototypeset-

andGCOSoperating systems.
Mathematical expressions are described in a language designed to be easy to use by people who know neither mathematics nor
typesetting. Enough of the language to set in-line expressions like

x−>π /2
lim (tan x)sin 2x = 1 or display equations like

G(z) = eln G(z) = exp
k≥1
Σ Skzk

k

=
k≥1
Π eSkzk/k

=

1 + S1z +

S2
1z2

2!
+ . . .

1 +

S2z2

2
+

S2
2z4

22 ⋅ 2!
+ . . .

. . .

=
m≥0
Σ

k1,k2,...,km≥0

k1+2k2+...+mkm=m

Σ Sk1
1

1k1k1!

Sk2
2

2k2k2!
. . . Skm

m

mkmkm!

zm

ters on theUNIX†

†UNIX is a Trademark of Bell Laborato-
ries.

can be learned in an hour or so.
The language interfaces directly with the phototypesetting languageTROFF, so
the running text of a manuscript, and the entire document produced in one proces
The same language may be used with theUNIX formatterNROFFto set mathema
Model 37 teletypes.
EQN is a program for typesetting mathematics on the
Graphics Systems phototypesetters onUNIX andGCOS.
The EQN language was designed to be easy to use by
people who know neither mathematics nor typesetting.
ThusEQN knows relatively little about mathematics. In
particular, mathematical symbols like +,−, ×, parenthe-
ses, and so on have no special meanings.EQN is quite
happy to set garbage (but it will look good).
EQN works as a preprocessor for the typesetter format-
ter, TROFF[1], so the normal mode of operation is to
prepare a document with both mathematics and ordi-
nary text interspersed, and letEQN set the mathematics
while TROFFdoes the body of the text.
On UNIX, EQN will also produce mathematics onDASI
and GSI terminals and on Model 37 teletypes. The
input is identical, but you have to use the programs
NEQN and NROFF instead of EQN and TROFF. Of
course, some things won’t look as good because termi-
nals don’t provide the variety of characters, sizes and
fonts that a typesetter does, but the output is usually
adequate for proofreading.
To useEQN on UNIX,

eqn files troff

GCOSuse is discussed in section 26.
To tell EQN where a mathematical expression begins
and ends, we mark it with lines beginning.EQ and.EN.
Thus if you type the lines

¬EQ
x=y+z
¬EN

your output will look like

x = y + z

The .EQ and .EN are copied through untouched; they
are not otherwise processed byEQN. This means that
you have to take care of things like centering, number-
ing, and so on yourself. The most common way is to
use theTROFF and NROFF macro package package
‘−ms’ developed by M. E. Lesk[3], which allows you to
center, indent, left-justify and number equations.
With the ‘−ms’ package, equations are centered by
default. To left-justify an equation, use.EQ L instead of
.EQ. To indent it, use.EQ I. Any of these can be fol-
lowed by an arbitrary ‘equation number’ which will be
placed at the right margin. For example, the input

¬EQ I (3.1a)
x = f(y/2) + y/2
¬EN

produces the output

x = f (y/2) + y/2 (3.1a)

-- --

- 8 -

There is also a shorthand notation so in-line expres-
sions likeπ 2

i can be entered without.EQ and.EN. We
will talk about it in section 19.
Spaces and newlines within an expression are thrown
aw ay byEQN. (Normal text is left absolutely alone.)
Thus between.EQand.EN,

x=y+z

and

x = y + z

and

x = y
+ z

and so on all produce the same output

x = y + z

You should use spaces and newlines freely to make
your input equations readable and easy to edit. In par-
ticular, very long lines are a bad idea, since they are
often hard to fix if you make a mistake.
To force extra spaces into theoutput,use a tilde ‘‘ ˜ ’’
for each space you want:

x˜=˜y˜+˜z

gives

x = y + z

You can also use a circumflex ‘‘ˆ’’, which gives a space
half the width of a tilde. It is mainly useful for fine-
tuning. Tabs may also be used to position pieces of an
expression, but the tab stops must be set byTROFF
commands.
EQN knows some mathematical symbols, some mathe-
matical names, and the Greek alphabet. For example,

x=2 pi int sin (omega t)dt

produces

x = 2π ∫ sin(ω t)dt

Here the spaces in the input arenecessaryto tell EQN
that int, pi, sin and omegaare separate entities that
should get special treatment. Thesin, digit 2, and
parentheses are set in roman type instead of italic;pi
andomegaare made Greek; andint becomes the inte-
gral sign.
When in doubt, leave spaces around separate parts of
the input. Averycommon error is to typef(pi) without
leaving spaces on both sides of thepi. As a result,EQN
does not recognizepi as a special word, and it appears
as f (pi) instead off (π).
A complete list ofEQN names appears in section 23.
Knowledgeable users can also useTROFF four-charac-
ter names for anythingEQN doesn’t know about, like
\(bsfor the Bell System sign .
The only wayEQN can deduce that some sequence of
letters might be special is if that sequence is separated
from the letters on either side of it. This can be done

by surrounding a special word by ordinary spaces (or
tabs or newlines), as we did in the previous section.
You can also make special words stand out by sur-
rounding them with tildes or circumflexes:

x˜=˜2˜pi˜int˜sin˜(˜omega˜t˜)˜dt

is much the same as the last example, except that the
tildes not only separate the magic words likesin,
omega,and so on, but also add extra spaces, one space
per tilde:

x = 2 π ∫ sin (ω t) dt

Special words can also be separated by braces { } and
double quotes "...", which have special meanings that
we will see soon.
Subscripts and superscripts are obtained with the
wordssubandsup.

x sup 2 + y sub k

gives

x2 + yk

EQN takes care of all the size changes and vertical
motions needed to make the output look right. The
words sub and sup must be surrounded by spaces;x
sub2will give you xsub2 instead ofx2. Furthermore,
don’t forget to leave a space (or a tilde, etc.) to mark
the end of a subscript or superscript. A common error
is to say something like

y = (x sup 2)+1

which causes

y = (x2)+1

instead of the intended

y = (x2) + 1

Subscripted subscripts and superscripted superscripts
also work:

x sub i sub 1

is

xi1

A subscript and superscript on the same thing are
printed one above the other if the subscript comesfirst:

x sub i sup 2

is

x2
i

Other than this special case,subandsupgroup to the
right, sox sup y sub zmeansxyz, not xy

z.
Normally, the end of a subscript or superscript is
marked simply by a blank (or tab or tilde, etc.) What if
the subscript or superscript is something that has to be
typed with blanks in it? In that case, you can use the
braces { and } to mark the beginning and end of the
subscript or superscript:

-- --

- 9 -

e sup {i omega t}

is

eiω t

Rule: Braces canalwaysbe used to forceEQN to treat
something as a unit, or just to make your intent per-
fectly clear. Thus:

x sub {i sub 1} sup 2

is

x2
i1

with braces, but

x sub i sub 1 sup 2

is

xi21

which is rather different.
Braces can occur within braces if necessary:

e sup {i pi sup {rho +1}}

is

eiπ ρ+1

The general rule is that anywhere you could use some
single thing likex, you can use an arbitrarily compli-
cated thing if you enclose it in braces.EQN will look
after all the details of positioning it and making it the
right size.
In all cases, make sure you have the right number of
braces. Leaving one out or adding an extra will cause
EQN to complain bitterly.
Occasionally you will have to print braces. To do this,
enclose them in double quotes, like "{". Quoting is dis-
cussed in more detail in section 14.
To make a fraction, use the wordover:

a+b over 2c =1

gives

a + b

2c
= 1

The line is made the right length and positioned auto-
matically. Braces can be used to make clear what goes
over what:

{alpha + beta} over {sin (x)}

is

α + β
sin(x)

What happens when there is both anover and asup in
the same expression? In such an apparently ambiguous
case,EQN does thesupbefore theover,so

−b sup 2 over pi

is
−b2

π
instead of−b

2

π The rules which decide which

operation is done first in cases like this are summarized
in section 23. When in doubt, however,use bracesto
make clear what goes with what.
To draw a square root, usesqrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

is

√ a + b +
1

√ ax2 + bx + c

Warning — square roots of tall quantities look lousy,
because a root-sign big enough to cover the quantity is
too dark and heavy:

sqrt {a sup 2 over b sub 2}

is

√ a2

b2

Big square roots are generally better written as some-
thing to the power1⁄2:

(a2/b2)
1
2

which is

(a sup 2 /b sub 2) sup half

Summations, integrals, and similar constructions are
easy:

sum from i=0 to {i= inf} x sup i

produces

i=∞

i=0
Σ xi

Notice that we used braces to indicate where the upper
part i = ∞ begins and ends. No braces were necessary
for the lower parti = 0, because it contained no blanks.
The braces will never hurt, and if thefrom and to parts
contain any blanks, you must use braces around them.
The from andto parts are both optional, but if both are
used, they hav e to occur in that order.
Other useful characters can replace thesum in our
example:

int prod union inter

become, respectively,

∫ Π ∪ ∩
Since the thing before thefrom can be anything, even
something in braces,from-tocan often be used in unex-
pected ways:

lim from {n −> inf} x sub n =0

is

n−>∞
lim xn = 0

By default, equations are set in 10-point type (the same
size as this guide), with standard mathematical conven-

-- --

- 10 -

tions to determine what characters are in roman and
what in italic. AlthoughEQN makes a valiant attempt
to use esthetically pleasing sizes and fonts, it is not per-
fect. To change sizes and fonts, usesize nand roman,
italic, bold and fat. Like sub and sup, size and font
changes affect only the thing that follows them, and
revert to the normal situation at the end of it. Thus

bold x y

is

xy

and

size 14 bold x = y +
size 14 {alpha + beta}

gives

x = y + α + β
As always, you can use braces if you want to affect
something more complicated than a single letter. For
example, you can change the size of an entire equation
by

size 12 { ... }

Legal sizes which may followsizeare 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, 28, 36. You can also
change the sizeby a giv en amount; for example, you
can saysize +2to make the size two points bigger, or
size−3 to make it three points smaller. This has the
advantage that you don’t hav e to know what the current
size is.
If you are using fonts other than roman, italic and bold,
you can sayfont X whereX is a one characterTROFF
name or number for the font. SinceEQN is tuned for
roman, italic and bold, other fonts may not give quite as
good an appearance.
The fat operation takes the current font and widens it
by overstriking:fat gradis ∇∇ andfat {x sub i}is xixi .
If an entire document is to be in a non-standard size or
font, it is a severe nuisance to have to write out a size
and font change for each equation. Accordingly, you
can set a ‘‘global’’ size or font which thereafter affects
all equations. At the beginning of any equation, you
might say, for instance,

¬EQ
gsize 16
gfont R
...
¬EN

to set the size to 16 and the font to roman thereafter. In
place of R, you can use any of theTROFF font names.
The size aftergsizecan be a relative change with + or
−.
Generally,gsizeandgfontwill appear at the beginning

of a document but they can also appear thoughout a
document: the global font and size can be changed as
you will typically want the size of equations to
match
often as needed. For example, in a footnote‡

the size of the footnote text, which is two points
smaller than the main text. Don’t forget to reset
the global size at the end of the footnote.
To get funny marks on top of letters, there are sev-
eral words:

x dot ẋ
x dotdot ẍ
x hat x̂
x tilde x̃
x vec →x
x dyad ↔x
x bar x
x under x

The diacritical mark is placed at the right height.
The bar and under are made the right length for
the entire construct, as inx + y + z; other marks
are centered.
Any input entirely within quotes ("...") is not sub-
ject to any of the font changes and spacing adjust-
ments normally done by the equation setter. This
provides a way to do your own spacing and adjust-
ing if needed:

italic "sin(x)" + sin (x)

is

sin(x)+ sin(x)

Quotes are also used to get braces and otherEQN
keywords printed:

"{ size alpha }"

is

{ size alpha }

and

roman "{ size alpha }"

is

{ size alpha }

The construction "" is often used as a place-holder
when grammaticallyEQN needs something, but
you don’t actually want anything in your output.
For example, to make2He, you can’t just typesup
2 roman Hebecause asuphas to be a superscript
onsomething. Thus you must say

"" sup 2 roman He

To get a literal quote use ‘‘\"’’.TROFFcharacters
like \(bs can appear unquoted, but more compli-
cated things like horizontal and vertical motions
with \h and\v should always be quoted. (If you’ve
never

‡Like this one, in which we have a few random
expressions likexi andπ 2. The sizes for these were
set by the commandgsize−2.

-- --

- 11 -

heard of\h and\v, ignore this section.)
Sometimes it’s necessary to line up a series of
equations at some horizontal position, often at an
equals sign. This is done with two operations
calledmarkandlineup.
The wordmark may appear once at any place in
an equation. It remembers the horizontal position
where it appeared. Successive equations can con-
tain one occurrence of the wordlineup. The place
where lineup appears is made to line up with the
place marked by the previousmark if at all possi-
ble. Thus, for example, you can say

¬EQ I
x+y mark = z
¬EN
¬EQ I
x lineup = 1
¬EN

to produce

x + y = z

x = 1

For reasons too complicated to talk about, when
you useEQN and ‘−ms’, use either.EQ I or .EQ L.
mark andlineup don’t work with centered equa-
tions. Also bear in mind thatmark doesn’t look
ahead;

x mark =1
...
x+y lineup =z

isn’t going to work, because there isn’t room for
thex+y part after themark remembers where thex
is.
To get big brackets [], braces { }, parentheses (),
and bars | | around things, use theleft and right
commands:

left { a over b + 1right }
˜=˜ left (c over d right)
+ left [e right]

is

a

b
+ 1

=

c

d

+ [e]

The resulting brackets are made big enough to
cover whatever they enclose. Other characters can
be used besides these, but the are not likely to look
very good. One exception is thefloor andceiling
characters:

left floor x over y right floor
<= left ceiling a over b right ceiling

produces

x

y

≤

a

b

Several warnings about brackets are in order.
First, braces are typically bigger than brackets and
parentheses, because they are made up of three,
five, seven, etc., pieces, while brackets can be
made up of two, three, etc. Second, big left and
right parentheses often look poor, because the
character set is poorly designed.
Theright part may be omitted: a ‘‘left something’’

need not have a corresponding ‘‘right something’’.
If the right part is omitted, put braces around the
thing you want the left bracket to encompass. Oth-
erwise, the resulting brackets may be too large.
If you want to omit theleft part, things are more
complicated, because technically you can’t hav e a
right without a correspondingleft. Instead you
have to say

left "" right)

for example. Theleft "" means a ‘‘left nothing’’.
This satisfies the rules without hurting your output.
There is a general facility for making vertical piles
of things; it comes in several flavors. For example:

A ˜=˜ left [
pile { a above b above c }
˜˜ pile { x above y above z }

right]

will make

A =

a

b

c

x

y

z

The elements of the pile (there can be as many as
you want) are centered one above another, at the
right height for most purposes. The keyword
above is used to separate the pieces; braces are
used around the entire list. The elements of a pile
can be as complicated as needed, even containing
more piles.
Three other forms of pile exist:lpile makes a pile
with the elements left-justified;rpile makes a
right-justified pile; andcpile makes a centered pile,
just like pile. The vertical spacing between the
pieces is somewhat larger forl-, r- andcpiles than
it is for ordinary piles.

roman sign (x)˜=˜
left {

lpile {1 above 0 above−1}
˜˜ lpile
{if˜x>0 above if˜x=0 above if˜x<0}

makes

sign(x) =

1

0

−1

if x > 0

if x = 0

if x < 0

Notice the left brace without a matching right one.

-- --

- 12 -

It is also possible to make matrices. For example,
to make a neat array like

xi

yi

x2

y2

you have to type

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered columns.
The elements of the columns are then listed just as
for a pile, each element separated by the word
above. You can also uselcol or rcol to left or right
adjust columns. Each column can be separately
adjusted, and there can be as many columns as you
like.
The reason for using a matrix instead of two adja-
cent piles, by the way, is that if the elements of the
piles don’t all have the same height, they won’t
line up properly. A matrix forces them to line up,
because it looks at the entire structure before
deciding what spacing to use.
A word of warning about matrices —each col-
umn must have the same number of elements in it.
The world will end if you get this wrong.
In a mathematical document, it is necessary to fol-
low mathematical conventions not just in display
equations, but also in the body of the text, for
example by making variable names likex italic.
Although this could be done by surrounding the
appropriate parts with.EQ and .EN, the continual
repetition of .EQ and .EN is a nuisance. Further-
more, with ‘−ms’, .EQ and .EN imply a displayed
equation.
EQN provides a shorthand for short in-line expres-
sions. You can define two characters to mark the
left and right ends of an in-line equation, and then
type expressions right in the middle of text lines.
To set both the left and right characters to dollar
signs, for example, add to the beginning of your
document the three lines

.EQ
delim
.EN

Having done this, you can then say things like

Let alpha sub i be the primary variable, and let
beta be zero. Then we can show that x sub 1 is
>=0.

This works as you might expect — spaces, new-
lines, and so on are significant in the text, but not
in the equation part itself. Multiple equations can
occur in a single input line.
Enough room is left before and after a line that
contains in-line expressions that something like
n

i=1
Σ xi does not interfere with the lines surrounding

it.
To turn off the delimiters,

.EQ
delim off
.EN

Warning: don’t use braces, tildes, circumflexes, or
double quotes as delimiters — chaos will result.
EQN provides a facility so you can give a fre-
quently-used string of characters a name, and
thereafter just type the name instead of the whole
string. For example, if the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can
save re-typing it each time by defining it like this:

define xy ´x sub i sub 1 + y sub i sub 1´

This makesxy a shorthand for whatever characters
occur between the single quotes in the definition.
You can use any character instead of quote to mark
the ends of the definition, so long as it doesn’t
appear inside the definition.
Now you can usexy like this:

¬EQ
f(x) = xy ...
¬EN

and so on. Each occurrence ofxy will expand into
what it was defined as. Be careful to leave spaces
or their equivalent around the name when you
actually use it, soEQN will be able to identify it as
special.
There are several things to watch out for. First,
although definitions can use previous definitions,
as in

.EQ
define xi ´ x sub i ´
define xi1 ´ xi sub 1 ´
.EN

don’t define something in terms of itself ’A favorite
error is to say

define X ´ roman X ´

This is a guaranteed disaster, since Xis now
defined in terms of itself. If you say

define X ´ roman "X" ´

however, the quotes protect the second X, and
ev erything works fine.
EQN keywords can be redefined. You can make /
meanoverby saying

define / ´ over ´

or redefineoveras / with

define over ´ / ´

-- --

- 13 -

If you need different things to print on a terminal
and on the typesetter, it is sometimes worth defin-
ing a symbol differently inNEQN and EQN. This
can be done withndefineandtdefine. A definition
made withndefineonly takes effect if you are run-
ning NEQN; if you usetdefine,the definition only
applies forEQN. Names defined with plaindefine
apply to bothEQN andNEQN.
AlthoughEQN tries to get most things at the right

place on the paper, it isn’t perfect, and occasion-
ally you will need to tune the output to make it just
right. Small extra horizontal spaces can be
obtained with tilde and circumflex. You can also
sayback nandfwd n to move small amounts hori-
zontally. n is how far to move in1/100’s of an em
(an em is about the width of the letter ‘m’.) Thus
back 50moves back about half the width of an m.
Similarly you can move things up or down withup
n and down n. As with sub or sup, the local
motions affect the next thing in the input, and this
can be something arbitrarily complicated if it is
enclosed in braces.
Here is the complete source for the three display
equations in the abstract of this guide.

.EQ I
G(z)˜mark =˜ e sup { ln ˜ G(z) }
˜=˜ exp left (
sum from k>=1 {S sub k z sup k} over k right)
˜=˜ prod from k>=1 e sup {S sub k z sup k /k}
.EN
.EQ I
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (1+ { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }
+ ... right) ...
.EN
.EQ I
lineup = sum from m>=0 left (
sum from
pile { k sub 1 ,k sub 2 ,..., k sub m >=0
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{ S sub 1 sup {k sub 1} } over {1 sup k sub 1 k sub 1 ! } ˜
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } ˜
...
{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! }
right) z sup m
.EN

If you don’t use braces,EQN will do operations in
the order shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation marks,
and these mathematical words are converted to
Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log ln exp
Re Im and if for det

These character sequences are recognized and
translated as shown.

>= ≥
<= ≤
== ≡
!= ≠
+− ±
−> →
<− ←
<< <<
>> >>
inf ∞
partial ∂
half 1

2
prime ′
approx ≈
nothing
cdot ⋅
times ×
del ∇
grad ∇
... . . .

,..., , . . . ,
sum Σ
int ∫
prod Π
union ∪
inter ∩

To obtain Greek letters, simply spell them out in
whatever case you want:

DELTA ∆ iota ι
GAMMA Γ kappa κ
LAMBDA Λ lambda λ
OMEGA Ω mu µ
PHI Φ nu ν
PI Π omega ω
PSI Ψ omicron ο
SIGMA Σ phi φ
THETA Θ pi π
UPSILON ϒ psi ψ
XI Ξ rho ρ
alpha α sigma σ
beta β tau τ
chi χ theta θ
delta δ upsilon υ
epsilon ε xi ξ
eta η zeta ζ
gamma γ

-- --

- 14 -

These are all the words known toEQN (except for
characters with names), together with the section
where they are discussed.

above 17, 18 lpile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vec 13
italic 12 ˜, ˆ 4, 6
lcol 18 { } 8
left 16 "..." 8, 14
lineup 15

If you make a mistake in an equation, like leaving
out a brace (very common) or having one too many
(very common) or having asup with nothing
before it (common),EQN will tell you with the
message

syntax error between lines x and y, file z

wherex andy are approximately the lines between
which the trouble occurred, andz is the name of
the file in question. The line numbers are approxi-
mate — look nearby as well. There are also self-
explanatory messages that arise if you leave out a
quote or try to runEQN on a non-existent file.
If you want to check a document before actually
printing it (onUNIX only),

eqn files >/dev/null

will throw away the output but print the messages.
If you use something like dollar signs as delim-
iters, it is easy to leave one out. This causes very
strange troubles. The programcheckeq(on GCOS,
use ./checkeqinstead) checks for misplaced or
missing dollar signs and similar troubles.
In-line equations can only be so big because of an
internal buffer inTROFF. If you get a message
‘‘word overflow’’, you have exceeded this limit. If
you print the equation as a displayed equation this
message will usually go away. The message ‘‘line
overflow’’ indicates you have exceeded an even
bigger buffer. The only cure for this is to break the

equation into two separate ones.
On a related topic,EQN does not break equations
by itself — you must split long equations up across
multiple lines by yourself, marking each by a sepa-
rate .EQEN sequence.EQN does warn about
equations that are too long to fit on one line.
To print a document that contains mathematics on
theUNIX typesetter,

eqn files troff

If there are anyTROFF options, they go after the
TROFFpart of the command. For example,

eqn files troff −ms

To run the same document on theGCOStypesetter,
use

eqn files troff −g (other options) gcat

A compatible version ofEQN can be used on
devices like teletypes andDASI andGSI terminals
which have half-line forward and reverse capabili-
ties. To print equations on a Model 37 teletype, for
example, use

neqn files nroff

The language for equations recognized byNEQN is
identical to that ofEQN, although of course the
output is more restricted.
To use aGSI or DASI terminal as the output
device,

neqn files nroff −Tx

wherex is the terminal type you are using, such as
300or 300S.
EQN and NEQN can be used with theTBL pro-
gram[2] for setting tables that contain mathemat-
ics. UseTBL before[N]EQN, like this:

tbl files eqn troff
tbl files neqn nroff

We are deeply indebted to J. F. Ossanna, the
author of TROFF, for his willingness to extend
TROFFto make our task easier, and for his continu-
ous assistance during the development and evolu-
tion of EQN. We are also grateful to A. V. Aho for
advice on language design, to S. C. Johnson for
assistance with theYA CC compiler-compiler, and
to all theEQN users who have made helpful sug-
gestions and criticisms.

References
[1]J. F. Ossanna, ‘‘NROFF/TROFFUser’s Manual’’,
Bell Laboratories Computing Science Technical
Report #54, 1976.
[2]M. E. Lesk, ‘‘Typing Documents onUNIX’’,
Bell Laboratories, 1976.

-- --

- 15 -

[3]M. E. Lesk, ‘‘TBL — A Program for Setting
Tables’’, Bell Laboratories Computing Science
Technical Report #49, 1976.

