I/O system. It was written with an eye toward providing guidance to writers of device driver routines, and is orient-
ed more toward describing the environment and nature of device drivers than the implementation of that part of the
file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file system as discussed in

the paper “The UNIX Time-sharing System.” A more detailed discussion appears in “UNIX Implementa-

tion;” the current document restates parts of that one, but is still more detailed. It is most useful in con-

junction with a copy of the system code, since it is basicallgxagesis of that code.

Device Classes

There are two classes of devibdock andcharacter. The block interface is suitable for devices like disks,
tapes, and DECtape which work, or can work, with addressible 512-byte blocks. Ordinary magnetic tape
just barely fits in this category, since by use of forward and backward spacing any block can be read, even
though blocks can be written only at the end of the tape. Block devices can at least potentially contain a
mounted file system. The interface to block devices is very highly structured; the drivers for these devices
share a great many routines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work must be done by
the driver itself.

Devices of both types are named bynajor and aminor device number. These numbers are generally
stored as an integer with the minor device number in the low-order 8 bits and the major device number in
the next-higher 8 bits; macrasajor andminor are available to access these numbers. The major device
number selects which driver will deal with the device; the minor device number is not used by the rest of
the system but is passed to the driver at appropriate times. Typically the minor number selects a subdevice
attached to a given controller, or one of several similar hardware interfaces.

The major device humbers for block and character devices are used as indices in separate tables; they both
start at 0 and therefore overlap.

Overview of 1/0

The purpose of thepen andcreat system calls is to set up entries in three separate system tables. The
first of these is the_ofile table, which is stored in the system’s per-process datauar€ais table is in-

dexed by the file descriptor returned by typen or creat, and is accessed duringead, write, or other
operation on the open file. An entry contains only a pointer to the corresponding entnfilef thble,

which is a per-system data base. There is one entry ifilghible for each instance open or creat.

This table is per-system because the same instance of an open file must be shared among the several pro-
cesses which can result frdorks after the file is opened. e table entry contains flags which indicate
whether the file was open for reading or writing or is a pipe, and a count which is used to decide when all
processes using the entry have terminated or closed the file (so the entry can be abandoned). There is also a
32-hit file offset which is used to indicate where in the file the next read or write will take place. Finally,
there is a pointer to the entry for the file in ihede table, which contains a copy of the file’s i-node.

Certain open files can be designated “multiplexed” files, and several other flags apply to such channels. In
such a case, instead of an offset, there is a pointer to an associated multiplex channel table. Multiplex chan-
nels will not be discussed here.

An entry in thefile table corresponds precisely to an instancepe or creat; if the same file is opened
several times, it will have several entries in this table. However, there is at most one entrindaé¢he

table for a given file. Also, a file may enter thede table not only because it is open, but also because it

is the current directory of some process or because it is a special file containing a currently-mounted file
system.

An entry in thenode table differs somewhat from the corresponding i-node as stored on the disk; the mod-
ified and accessed times are not stored, and the entry is augmented by a flag word containing information
about the entry, a count used to determine when it may be allowed to disappear, and the device and i-num-
ber whence the entry came. Also, the several block numbers that give addressing information for the file
are expanded from the 3-byte, compressed format used on the diskdndgiduantities.

During the processing of apen or creat call for a special file, the system always calls the devageesn

routine to allow for any special processing required (rewinding a tape, turning on the data-terminal-ready
lead of a modem, etc.). However, ttlese routine is called only when the last process closes a file, that is,
when the i-node table entry is being deallocated. Thus it is not feasible for a device to maintain, or depend
on, a count of its users, although it is quite possible to implement an exclusive-use device which cannot be
reopened

This paper gives an overview of the workings of the UNIXt

TUNIX is a Trademark of Bell Laboratories.

until it has been closed.

When aread or write takes place, the user’'s arguments anditedable entry are used to set up the vari-
ablesu.u_base, u.u_counfind u.u_offsetwhich respectively contain the (user) address of the I/O target
area, the byte-count for the transfer, and the current location in the file. If the file referred to is a character-
type special file, the appropriate read or write routine is called; it is responsible for transferring data and up-
dating the count and current location appropriately as discussed below. Otherwise, the current location is
used to calculate a logical block number in the file. If the file is an ordinary file the logical block number
must be mapped (possibly using indirect blocks) to a physical block number; a block-type special file need
not be mapped. This mapping is performed bybtitmap routine. In any event, the resulting physical block
number is used, as discussed below, to read or write the appropriate device.

Character Device Drivers

The cdevswtable specifies the interface routines present for character devices. Each device provides five
routines: open, close, read, write, and special-function (to implemeitcthesystem call). Any of these

may be missing. If a call on the routine should be ignored, @gn on non-exclusive devices that re-

quire no setup) thedevswentry can be given asilldev; if it should be considered an error, (ewgrite on
read-only deviceshodev is used. For terminals, thedevswstructure also contains a pointer to the
structure associated with the terminal.

Theopenroutine is called each time the file is opened with the full device number as argument. The sec-
ond argument is a flag which is non-zero only if the device is to be written upon.

The close routine is called only when the file is closed for the last time, that is when the very last process
in which the file is open closes it. This means it is not possible for the driver to maintain its own count of
its users. The first argument is the device number; the second is a flag which is non-zero if the file was
open for writing in the process which performs the faolase.

Whenwrite is called, it is supplied the device as argument. The per-user varigbleounthas been set

to the number of characters indicated by the user; for character devices, this number may be 0 initially.
u.u_baseis the address supplied by the user from which to start taking characters. The system may call the
routine internally, so the flag.u_segflgis supplied that indicates, @, thatu.u_baserefers to the system
address space instead of the user’s.

Thewrite routine should copy up to.u_countcharacters from the user’s buffer to the device, decrement-
ing u.u_countfor each character passed. For most drivers, which work one character at a time, the routine
cpass()is used to pick up characters from the user’s buffer. Successive calls on it return the characters to
be written untilu.u_countgoes to 0 or an error occurs, when it returhs Cpasstakes care of interrogat-

ing u.u_segflgand updatingi.u_count.

Write routines which want to transfer a probably large number of characters into an internal buffer may al-
so use the routine@move(buffer, offset, count, flagghich is faster when many characters must be moved.
lomove transfers up t@ount characters into thbuffer startingoffset bytes from the start of the buffer;

flag should beB_WRITE (which is 0) in the write case. Caution: the caller is responsible for making sure
the count is not too large and is non-zero. As an efficiency mt®ve is much slower if any of
buffer+offset, counbr u.u_baseis odd.

The device'sead routine is called under conditions similarvoite, except thati.u_countis guaranteed

to be non-zero. To return characters to the user, the rquaissc(c)is available; it takes care of house-
keeping likecpassand returns-1 as the last character specifieduby_countis returned to the user; before

that time, 0 is returnedomoveis also usable as withrite; the flag should bB_READ but the same cau-

tions apply.

The “special-functions” routine is invoked by thetty and gtty system calls as followq*p) (dev, v)

wherep is a pointer to the device’s routingev is the device number, andis a vector. In thetty case,

the device is supposed to place up to 3 words of status information into the vector; this will be returned to
the caller. In thestty casey is O; the device should take up to 3 words of control information from the ar-
ray u.u_arg[0...2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt occurs, it is turned
into a C-compatible call on the devices’s interrupt routine. The interrupt-catching mechanism makes the
low-order four bits of the “new PS” word in the trap vector for the interrupt available to the interrupt han-
dler. This is conventionally used by drivers which deal with multiple similar devices to encode the minor

-3-

device number. After the interrupt has been processed, a return from the interrupt handler will return from
the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most of these han-
dlers, for example, need a place to buffer characters in the internal interface between their “top half”
(read/write) and “bottom half” (interrupt) routines. For relatively low data-rate devices, the best mecha-
nism is the character queue maintained by the rougietiesandputc. A queue header has the structure

struct {
int c_cc; /* character count */
char *c_cf;/* first character */
char *c_cl;/* last character */

} queue;

Bell Labo-
ratories

Subject:
The UNIX I/O System Case-- File-

date: November
2, 1997

from:

Dennis
M. Ritchie

T™:

MEMORANDUM FOR FILE

A character is placed on the end of a queueuldg(c, &queue)wherec is the character amgueueis the

gueue header. The routine returisif there is no space to put the character, 0 otherwise. The first charac-

ter on the queue may be retrieveddstc(&queue)which returns either the (non-negative) characterlor

if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in the standard
system there are only some 600 character slots available. Thus device handlers, especially write routines,
must take care to avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. 3kepalent,

priority) causes the process to wait (allowing other processes to run) umiehioccurs; at that time, the

process is marked ready-to-run and the call will return when there is no process witlphdagtier

The callwakeup(eventjndicates that thevent has happened, that is, causes processes sleeping on the
event to be awakened. Theentis an arbitrary quantity agreed upon by the sleeper and the waker-up. By
convention, it is the address of some data area used by the driver, which guarantees that events are unique.
Processes sleeping on an event should not assume that the event has really happened; they should check
that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored scheduling situation.
A distinction is made between processes sleeping at priority less than the paRfEdR€y and those at
numerically larger priorities. The former cannot be interrupted by signals, although it is conceivable that it

-4 -

may be swapped out. Thus it is a bad idea to sleep with priority less than PZERO on an event which might
never occur. On the other hand, callskeepwith larger priority may never return if the process is termi-
nated by some signal in the meantime. Incidentally, it is a gross error glezgllin a routine called at in-

terrupt time, since the process which is running is almost certainly not the process which should go to
sleep. Likewise, none of the variables in the user an€ashould be touched, let alone changed, by an in-
terrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible to supply a
wakeup, (for example, a device going on-line, which does not generally cause an interrupt), the call
sleep(&lbolt, priority) may be given.Lbolt is an external cell whose address is awakened once every 4
seconds by the clock interrupt routine.

The routinesspl4(), spl5(), spl6(), spl7(are available to set the processor priority level as indicated to
avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, tireaout(func, arg, intervalwill be useful. This

routine arranges that aftarterval sixtieths of a second, tHanc will be called witharg as argument, in

the style(*func)(arg). Timeouts are used, for example, to provide real-time delays after function characters
like new-line and tab in typewriter output, and to terminate an attempt to read the 201 Datdplione

there is no response within a specified number of seconds. Notice that the number of sixtieths of a second
is limited to 32767, since it must appear to be positive, and that only a bounded number of timeouts can be
going on at once. Also, the specifiethc is called at clock-interrupt time, so it should conform to the re-
guirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of buffers containing
the images of blocks of data on the various devices. The most important purpose of these routines is to as-
sure that several processes that access the same block of the same device in multiprogrammed fashion
maintain a consistent view of the data in the block. A secondary but still important purpose is to increase
the efficiency of the system by keeping in-core copies of blocks that are being accessed frequently. The
main data base for this mechanism is the table of butdr&Each buffer header contains a pair of pointers
(b_forw, b_back)which maintain a doubly-linked list of the buffers associated with a particular block de-
vice, and a pair of pointer@v_forw, av_back)which generally maintain a doubly-linked list of blocks
which are “free,” that is, eligible to be reallocated for another transaction. Buffers that have 1/O in
progress or are busy for other purposes do not appear in this list. The buffer header also contains the device
and block number to which the buffer refers, and a pointer to the actual storage associated with the buffer.
There is a word count which is the negative of the number of words to be transferred to or from the buffer;
there is also an error byte and a residual word count used to communicate information from an 1/O routine
to its caller. Finally, there is a flag word with bits indicating the status of the buffer. These flags will be
discussed below.

Seven routines constitute the most important part of the interface with the rest of the system. Given a de-
vice and block number, botiread andgetblk return a pointer to a buffer header for the block; the differ-
ence is thabread is guaranteed to return a buffer actually containing the current data for the block, while
getblk returns a buffer which contains the data in the block only if it is already in core (whether it is or not

is indicated by th& DONE bit; see below). In either case the buffer, and the corresponding device block,

is made “busy,” so that other processes referring to it are obliged to wait until it become& ik is

used, for example, when a block is about to be totally rewritten, so that its previous contents are not useful;
still, no other process can be allowed to refer to the block until the new data is placed into it.

The breadaroutine is used to implement read-ahead. it is logically similargad, but takes as an addi-

tional argument the number of a block (on the same device) to be read asynchronously after the specifically
requested block is available.

Given a pointer to a buffer, thierelse routine makes the buffer again available to other processes. It is
called, for example, after data has been extracted followbrgad. There are three subtly-different write
routines, all of which take a buffer pointer as argument, and all of which logically release the buffer for use
by others and place it on the free li@write puts the buffer on the appropriate device queue, waits for the
write to be done, and sets the user’s error flag if requiBedvrite places the buffer on the device’s queue,

but does not wait for completion, so that errors cannot be reflected directly to th&dwseite does not

-5-

start any 1/O operation at all, but merely marks the buffer so that if it happens to be grabbed from the free

list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that 1/0O takes place correctly, and that errors are reflected to the

proper user; it is used, for example, when updating i-noBawrite is useful when more overlap is desired

(because no wait is required for I/O to finish) but when it is reasonably certain that the write is really re-

quired. Bdwrite is used when there is doubt that the write is needed at the moment. For ekainryite,

is called when the last byte ofnaite system call falls short of the end of a block, on the assumption that

anothemrite will be given soon which will re-use the same block. On the other hand, as the end of a block

is passedhawrite is called, since probably the block will not be accessed again soon and one might as well
start the writing process as soon as possible.

In any event, notice that the routingstblk and bread dedicate the given block exclusively to the use of

the caller, and make others wait, while onédolse, bwrite, bawritepr bdwrite must eventually be called

to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer. Since they

provide one important channel for information between the drivers and the block 1/0O system, it is important

to understand these flags. The following names are manifest constants which select the associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below) to indicate a
read operation. The symbBl WRITEis defined as 0 and does not define a flag; it is provided
as a mnemonic convenience to callers of routinesshikap which have a separate argument
which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is turned on
when the operation completes, whether normally as the result of an error. Itis also used as part
of the return argument afetblk to indicate if 1 that the returned buffer actually contains the
data in the requested block.

B_ERROR This bit may be set to 1 whiBnDONE is set to indicate that an I/O or other error occurred. If
it is set theb_error byte of the buffer header may contain an error code if it is non-zero. If
b_error is 0 the nature of the error is not specified. Actually no driver at preserit sater;
the latter is provided for a future improvement whereby a more detailed error-reporting scheme
may be implemented.

B_BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to someone’s ex-
clusive use. The buffer still remains attached to the list of blocks associated with its device,
however. Whemetblk (or bread, which calls it) searches the buffer list for a given device and
finds the requested block with this bit on, it sleeps until the bit clears.

B_PHYS This bit is set for raw I/O transactions that need to allocate the Unibus map on an 11/70.

B_MAP This bit is set on buffers that have the Unibus map allocated, so thatlone routine knows
to deallocate the map.

B_WANTEDThis flag is used in conjunction with tiiee BUSY bit. Before sleeping as described just
above getblk sets this flag. Conversely, when the block is freed and the busy bit goes down (in
brelse) a wakeupis given for the block header whenelrWANTEDis on. This strategem
avoids the overhead of having to cathkeupevery time a buffer is freed on the chance that
someone might want it.

B_AGE This bit may be set on buffers just before releasing them; if it is on, the buffer is placed at the
head of the free list, rather than at the tail. It is a performance heuristic used when the caller
judges that the same block will not soon be used again.

B_ASYNC This bit is set bypawrite to indicate to the appropriate device driver that the buffer should be
released when the write has been finished, usually at interrupt time. The difference between
bwrite andbawrite is that the former starts 1/O, waits until it is done, and frees the buffer. The
latter merely sets this bit and starts I/O. The bit indicatesréfee should be called for the
buffer on completion.

B_DELWRIThis bit is set byodwrite before releasing the buffer. Wheetblk, while searching for a free
block, discovers the bit is 1 in a buffer it would otherwise grab, it causes the block to be written
out before reusing it.

Block Device Drivers

Thebdevswtable contains the names of the interface routines and that of a table for each block device.

Just as for character devices, block device drivers may supplgesmand aclose routine called respec-

tively on each open and on the final close of the device. Instead of separate read and write routines, each
block device driver has strategy routine which is called with a pointer to a buffer header as argument. As
discussed, the buffer header contains a read/write flag, the core address, the block number, a (negative)
word count, and the major and minor device number. The role of the strategy routine is to carry out the op-
eration as requested by the information in the buffer header. When the transaction is complete the
B_DONE (and possibly th®_ERROR)bits should be set. Then if tiee ASYNCDbit is set,brelse should

be called; otherwisayakeup.In cases where the device is capable, under error-free operation, of transfer-
ring fewer words than requested, the device’s word-count register should be placed in the residual count
slot of the buffer header; otherwise, the residual count should be set to 0. This particular mechanism is re-
ally for the benefit of the magtape driver; when reading this device records shorter than requested are quite
normal, and the user should be told the actual length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header allocated as discussed
above, all that is actually required is that the argument be a pointer to a place containing the appropriate in-
formation. For example th@wvap routine, which manages movement of core images to and from the swap-
ping device, uses the strategy routine for this device. Care has to be taken that no extraneous bits get turned
on in the flag word.

The device’s table specified devswhas a byte to contain an active flag and an error count, a pair of
links which constitute the head of the chain of buffers for the débiderw, b_back),and a first and last

pointer for a device queue. Of these things, all are used solely by the device driver itself except for the
buffer-chain pointers. Typically the flag encodes the state of the device, and is used at a minimum to indi-
cate that the device is currently engaged in transferring information and no nhew command should be issued.
The error count is useful for counting retries when errors occur. The device queue is used to remember
stacked requests; in the simplest case it may be maintained as a first-in first-out list. Since buffers which
have been handed over to the strategy routines are never on the list of free buffers, the pointers in the buffer
which maintain the free ligav_forw, av_backjre also used to contain the pointers which maintain the de-

vice queues.

A couple of routines are provided which are useful to block device drii@isne(bp)arranges that the

buffer to whichbp points be released or awakened, as appropriate, when the strategy module has finished
with the buffer, either normally or after an error. (In the latter cas8 tEERRORbit has presumably been

set.)

The routinegeterror(bp) can be used to examine the error bit in a buffer header and arrange that any error
indication found therein is reflected to the user. It may be called only in the non-interrupt part of a driver
when 1/O has completd® DONE has been set).

Raw Block-device 1/0

A scheme has been set up whereby block device drivers may provide the ability to transfer information di-
rectly between the user’s core image and the device without the use of buffers and in blocks as large as the
caller requests. The method involves setting up a character-type special file corresponding to the raw de-
vice and providingead andwrite routines which set up what is usually a private, non-shared buffer header
with the appropriate information and call the device’s strategy routine. If desired, sepematndclose

routines may be provided but this is usually unnecessary. A special-function routine might come in handy,
especially for magtape.

A great deal of work has to be done to generate the “appropriate information” to put in the argument
buffer for the strategy module; the worst part is to map relocated user addresses to physical addresses.
Most of this work is done bghysio(strat, bp, dev, rjvhose arguments are the name of the strategy rou-

tine strat, the buffer pointetbp, the device numbedev, and a read-write flagy whose value is either
B_READor B_WRITE. Physianakes sure that the user's base address and count are even (because most
devices work in words) and that the core area affected is contiguous in physical space; it delays until the
buffer is not busy, and makes it busy while the operation is in progress; and it sets up user error return infor-
mation.

