
Make — A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be reprocessed or
recompiled after a change is made in some part of the source.Make provides a simple
mechanism for maintaining up-to-date versions of programs that result from many opera-
tions on a number of files. It is possible to tellMake the sequence of commands that cre-
ate certain files, and the list of files that require other files to be current before the opera-
tions can be done. Whenever a change is made in any part of the program, theMake
command will create the proper files simply, correctly, and with a minimum amount of
effort.
The basic operation ofMake is to find the name of a needed target in the description,
ensure that all of the files on which it depends exist and are up to date, and then create the
target if it has not been modified since its generators were. The description file really
defines the graph of dependencies;Make does a depth-first search of this graph to deter-
mine what work is really necessary.
Make also provides a simple macro substitution facility and the ability to encapsulate
commands in a single file for convenient administration.

August 15, 1978

-- --

Make — A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction
It is common practice to divide large programs into smaller, more manageable pieces. The pieces may
require quite different treatments: some may need to be run through a macro processor, some may need to
be processed by a sophisticated program generator (e.g., Yacc[1] or Lex[2]). The outputs of these genera-
tors may then have to be compiled with special options and with certain definitions and declarations. The
code resulting from these transformations may then need to be loaded together with certain libraries under
the control of special options. Related maintenance activities involve running complicated test scripts and
installing validated modules. Unfortunately, it is very easy for a programmer to forget which files depend
on which others, which files have been modified recently, and the exact sequence of operations needed to
make or exercise a new version of the program. After a long editing session, one may easily lose track of
which files have been changed and which object modules are still valid, since a change to a declaration can
obsolete a dozen other files. Forgetting to compile a routine that has been changed or that uses changed
declarations will result in a program that will not work, and a bug that can be very hard to track down. On
the other hand, recompiling everything in sight just to be safe is very wasteful.
The program described in this report mechanizes many of the activities of program development and main-
tenance. If the information on inter-file dependences and command sequences is stored in a file, the simple
command

make

is frequently sufficient to update the interesting files, regardless of the number that have been edited since
the last ‘‘make’’. In most cases, the description file is easy to write and changes infrequently. It is usually
easier to type themakecommand than to issue even one of the needed operations, so the typical cycle of
program development operations becomes

think — edit —make— test . . .

Make is most useful for medium-sized programming projects; it does not solve the problems of maintain-
ing multiple source versions or of describing huge programs.Make was designed for use on Unix, but a
version runs on GCOS.

Basic Features
The basic operation ofmakeis to update a target file by ensuring that all of the files on which it depends
exist and are up to date, then creating the target if it has not been modified since its dependents were.Make
does a depth-first search of the graph of dependences. The operation of the command depends on the abil-
ity to find the date and time that a file was last modified.
To illustrate, let us consider a simple example: A program namedprog is made by compiling and loading
three C-language filesx.c, y.c, andz.c with the lS library. By convention, the output of the C compilations
will be found in files namedx.o, y.o, andz.o. Assume that the filesx.c andy.c share some declarations in a
file nameddefs, but thatz.cdoes not. That is,x.c andy.c have the line

#include "defs"

The following text describes the relationships and operations:

prog : x.o y.o z.o
cc x.o y.o z.o −lS −o prog

-- --

- 2 -

x.o y.o : defs

If this information were stored in a file namedmakefile, the command

make

would perform the operations needed to recreateprog after any changes had been made to any of the four
source filesx.c, y.c, z.c, or defs.
Make operates using three sources of information: a user-supplied description file (as above), file names
and ‘‘last-modified’’ times from the file system, and built-in rules to bridge some of the gaps. In our exam-
ple, the first line says thatprog depends on three ‘‘.o’’ files. Once these object files are current, the second
line describes how to load them to createprog. The third line says thatx.o andy.o depend on the filedefs.
From the file system,makediscovers that there are three ‘‘.c’’ files corresponding to the needed ‘‘.o’’ files,
and uses built-in information on how to generate an object from a source file (i.e., issue a ‘‘cc −c’’ com-
mand).
The following long-winded description file is equivalent to the one above, but takes no advantage of
make’s innate knowledge:

prog : x.o y.o z.o
cc x.o y.o z.o −lS −o prog

x.o : x.c defs
cc −c x.c

y.o : y.c defs
cc −c y.c

z.o : z.c
cc −c z.c

If none of the source or object files had changed since the last timeprog was made, all of the files would
be current, and the command

make

would just announce this fact and stop. If, however, thedefsfile had been edited,x.c andy.c (but notz.c)
would be recompiled, and thenprog would be created from the new ‘‘.o’’ files. If only the file y.c had
changed, only it would be recompiled, but it would still be necessary to reloadprog.
If no target name is given on themakecommand line, the first target mentioned in the description is cre-
ated; otherwise the specified targets are made. The command

make x.o

would recompilex.o if x.c or defshad changed.
If the file exists after the commands are executed, its time of last modification is used in further decisions;
otherwise the current time is used. It is often quite useful to include rules with mnemonic names and com-
mands that do not actually produce a file with that name. These entries can take advantage ofmake’s abil-
ity to generate files and substitute macros. Thus, an entry ‘‘save’’ might be included to copy a certain set of
files, or an entry ‘‘cleanup’’ might be used to throw away unneeded intermediate files. In other cases one
may maintain a zero-length file purely to keep track of the time at which certain actions were performed.
This technique is useful for maintaining remote archives and listings.
Make has a simple macro mechanism for substituting in dependency lines and command strings. Macros
are defined by command arguments or description file lines with embedded equal signs. A macro is
invoked by preceding the name by a dollar sign; macro names longer than one character must be parenthe-
sized. The name of the macro is either the single character after the dollar sign or a name inside parenthe-
ses. The following are valid macro invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

-- --

- 3 -

The last two inv ocations are identical. $$ is a dollar sign. All of these macros are assigned values during
input, as shown below. Four special macros change values during the execution of the command: $∗, $@,
$?, and $<. They will be discussed later. The following fragment shows the use:

OBJECTS = x.o y.o z.o
LIBES = −lS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) −o prog
. . .

The command

make

loads the three object files with thelS library. The command

make "LIBES= −ll −lS"

loads them with both the Lex (‘‘−ll’’) and the Standard (‘‘−lS’’) libraries, since macro definitions on the
command line override definitions in the description. (It is necessary to quote arguments with embedded
commands.)
The following sections detail the form of description files and the command line, and discuss options and
built-in rules in more detail.

Description Files and Substitutions
A description file contains three types of information: macro definitions, dependency information, and ex-
ecutable commands. There is also a comment convention: all characters after a sharp (#) are ignored, as is
the sharp itself. Blank lines and lines beginning with a sharp are totally ignored. If a non-comment line is
too long, it can be continued using a backslash. If the last character of a line is a backslash, the backslash,
newline, and following blanks and tabs are replaced by a single blank.
A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is assigned the string of
characters following the equal sign (leading blanks and tabs are stripped.) The following are valid macro
definitions:

2 = xyz
abc = −ll −ly −lS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has the null string
as value. Macro definitions may also appear on themakecommand line (see below).
Other lines give information about target files. The general form of an entry is:

target1 [target2 . . .] :[:] [dependent1 . . .] [; commands] [# . . .]
[(tab)commands] [# . . .]
. . .

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, periods, and
slashes. (Shell metacharacters ‘‘∗’’ and ‘‘?’’ are expanded.) A command is any string of characters not in-
cluding a sharp (except in quotes) or newline. Commands may appear either after a semicolon on a depen-
dency line or on lines beginning with a tab immediately following a dependency line.
A dependency line may have either a single or a double colon. A target name may appear on more than
one dependency line, but all of those lines must be of the same (single or double colon) type.

blanks inUNIX†

†UNIX is a Trademark of Bell Laboratories.

-- --

- 4 -

1.For the usual single-colon case, at most one of these dependency lines may have a command sequence as-
sociated with it. If the target is out of date with any of the dependents on any of the lines, and a command
sequence is specified (even a null one following a semicolon or tab), it is executed; otherwise a default cre-
ation rule may be invoked.
2.In the double-colon case, a command sequence may be associated with each dependency line; if the target
is out of date with any of the files on a particular line, the associated commands are executed. A built-in
rule may also be executed. This detailed form is of particular value in updating archive-type files.
If a target must be created, the sequence of commands is executed. Normally, each command line is print-
ed and then passed to a separate invocation of the Shell after substituting for macros. (The printing is sup-
pressed in silent mode or if the command line begins with an @ sign).Make normally stops if any com-
mand signals an error by returning a non-zero error code. (Errors are ignored if the ‘‘−i’’ flags has been
specified on themakecommand line, if the fake target name ‘‘.IGNORE’’ appears in the description file, or
if the command string in the description file begins with a hyphen. SomeUNIX commands return meaning-
less status). Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g.,cd and Shell control commands) that have meaning only within a single Shell
process; the results are forgotten before the next line is executed.
Before issuing any command, certain macros are set. $@ is set to the name of the file to be ‘‘made’’. $? is
set to the string of names that were found to be younger than the target. If the command was generated by
an implicit rule (see below), $< is the name of the related file that caused the action, and $∗ is the prefix
shared by the current and the dependent file names.
If a file must be made but there are no explicit commands or relevant built-in rules, the commands associat-
ed with the name ‘‘.DEFAULT’’ are used. If there is no such name,makeprints a message and stops.

Command Usage
The makecommand takes four kinds of arguments: macro definitions, flags, description file names, and
target file names.

make [flags] [macro definitions] [targets]

The following summary of the operation of the command explains how these arguments are interpreted.
First, all macro definition arguments (arguments with embedded equal signs) are analyzed and the assign-
ments made. Command-line macros override corresponding definitions found in the description files.
Next, the flag arguments are examined. The permissible flags are
−iIgnore error codes returned by invoked commands. This mode is entered if the fake target name ‘‘.IG-
NORE’’ appears in the description file.
−sSilent mode. Do not print command lines before executing. This mode is also entered if the fake target
name ‘‘.SILENT’’ appears in the description file.
−rDo not use the built-in rules.
−nNo execute mode. Print commands, but do not execute them. Even lines beginning with an ‘‘@’’ sign
are printed.
−tTouch the target files (causing them to be up to date) rather than issue the usual commands.
−qQuestion. Themakecommand returns a zero or non-zero status code depending on whether the target
file is or is not up to date.
−pPrint out the complete set of macro definitions and target descriptions
−dDebug mode. Print out detailed information on files and times examined.
−fDescription file name. The next argument is assumed to be the name of a description file. A file name of
‘‘−’’ denotes the standard input. If there are no ‘‘−f ’’ arguments, the file namedmakefileor Makefilein the
current directory is read. The contents of the description files override the built-in rules if they are pre-
sent).
Finally, the remaining arguments are assumed to be the names of targets to be made; they are done in left
to right order. If there are no such arguments, the first name in the description files that does not begin with
a period is ‘‘made’’.

-- --

- 5 -

Implicit Rules
Themakeprogram uses a table of interesting suffixes and a set of transformation rules to supply default de-
pendency information and implied commands. (The Appendix describes these tables and means of overrid-
ing them.) The default suffix list is:

.o Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source grammar

.l Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths connecting a
pair of suffixes, the longer one is used only if the intermediate file exists or is named in the description.

.o

.c .r .e .f .s .y .yr .ye .l .d

.y .l .yr .ye

If the file x.o were needed and there were anx.c in the description or directory, it would be compiled. If
there were also anx.l, that grammar would be run through Lex before compiling the result. However, if
there were nox.cbut there were anx.l, makewould discard the intermediate C-language file and use the di-
rect link in the graph above.
It is possible to change the names of some of the compilers used in the default, or the flag arguments with
which they are invoked by knowing the macro names used. The compiler names are the macros AS, CC,
RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the ‘‘newcc’’ command to be used instead of the usual C compiler. The macros CFLAGS,
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with op-
tional flags. Thus,

make "CFLAGS=−O"

causes the optimizing C compiler to be used.

Example
As an example of the use ofmake,we will present the description file used to maintain themakecommand
itself. The code formakeis spread over a number of C source files and a Yacc grammar. The description
file contains:

Description file for the Make command

P = und −3 | opr −r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= −lS
LINT = lint −p
CFLAGS = −O

-- --

- 6 -

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) −o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.o gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? | $P
touch print

test:
make −dp | grep −v TIME >1zap
/usr/bin/make −dp | grep −v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

Makeusually prints out each command before issuing it. The following output results from typing the sim-
ple command

make

in a directory containing only the source and description file:

cc −c version.c
cc −c main.c
cc −c doname.c
cc −c misc.c
cc −c files.c
cc −c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc −c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o −lS −o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,makefound
them using its suffix rules and issued the needed commands. The string of digits results from the ‘‘size
make’’ command; the printing of the command line itself was suppressed by an @ sign. The @ sign on the
sizecommand in the description file suppressed the printing of the command, so only the sizes are written.
The last few entries in the description file are useful maintenance sequences. The ‘‘print’’ entry prints only
the files that have been changed since the last ‘‘make print’’ command. A zero-length fileprint is main-
tained to keep track of the time of the printing; the $? macro in the command line then picks up only the
names of the files changed sinceprint was touched. The printed output can be sent to a different printer or
to a file by changing the definition of theP macro:

make print "P = opr −sp"

-- --

- 7 -

or
make print "P= cat >zap"

Suggestions and Warnings
The most common difficulties arise frommake’s specific meaning of dependency. If filex.c has a ‘‘#in-
clude "defs"’’ line, then the object filex.o depends ondefs; the source filex.c does not. (Ifdefsis changed,
it is not necessary to do anything to the filex.c, while it is necessary to recreatex.o.)
To discover whatmakewould do, the ‘‘−n’’ option is very useful. The command

make −n

ordersmaketo print out the commands it would issue without actually taking the time to execute them. If a
change to a file is absolutely certain to be benign (e.g., adding a new definition to an include file), the ‘‘−t’’
(touch) option can save a lot of time: instead of issuing a large number of superfluous recompilations,make
updates the modification times on the affected file. Thus, the command

make −ts

(‘‘touch silently’’) causes the relevant files to appear up to date. Obvious care is necessary, since this mode
of operation subverts the intention ofmakeand destroys all memory of the previous relationships.
The debugging flag (‘‘−d’’) causesmaketo print out a very detailed description of what it is doing, includ-
ing the file times. The output is verbose, and recommended only as a last resort.

Acknowledgments
I would like to thank S. C. Johnson for suggesting this approach to program maintenance control. I would
like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs during development ofmake.

References
1.S. C. Johnson, ‘‘Yacc — Yet Another Compiler-Compiler’’, Bell Laboratories Computing Science Tech-
nical Report #32, July 1978.
2.M. E. Lesk, ‘‘Lex — A Lexical Analyzer Generator’’, Computing Science Technical Report #39, October
1975.

-- --

- 8 -

Appendix. Suffixes and Transformation Rules
The makeprogram itself does not know what file name suffixes are interesting or how to transform a file
with one suffix into a file with another suffix. This information is stored in an internal table that has the
form of a description file. If the ‘‘−r’’ flag is used, this table is not used.
The list of suffixes is actually the dependency list for the name ‘‘.SUFFIXES’’;makelooks for a file with
any of the suffixes on the list. If such a file exists, and if there is a transformation rule for that combination,
makeacts as described earlier. The transformation rule names are the concatenation of the two suffixes.
The name of the rule to transform a ‘‘.r’’ file to a ‘‘ .o’’ file is thus ‘‘.r.o’’. If the rule is present and no ex-
plicit command sequence has been given in the user’s description files, the command sequence for the rule
‘‘.r.o’’ is used. If a command is generated by using one of these suffixing rules, the macro $∗ is given the
value of the stem (everything but the suffix) of the name of the file to be made, and the macro $< is the
name of the dependent that caused the action.
The order of the suffix list is significant, since it is scanned from left to right, and the first name that is
formed that has both a file and a rule associated with it is used. If new names are to be appended, the user
can just add an entry for ‘‘.SUFFIXES’’ in his own description file; the dependents will be added to the
usual list. A ‘‘.SUFFIXES’’ line without any dependents deletes the current list. (It is necessary to clear
the current list if the order of names is to be changed).
The following is an excerpt from the default rules file:

.SUFFIXES : .o .c .e .r .f .y .yr .ye .l .s
YA CC=yacc
YA CCR=yacc −r
YA CCE=yacc −e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as −
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o :

$(CC) $(CFLAGS) −c $<
.e.o .r.o .f.o :

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) −c $<
.s.o :

$(AS) −o $@ $<
.y.o :

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) −c y.tab.c
rm y.tab.c
mv y.tab.o $@

.y.c :
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

