
system and offers a number of hints on how to improve security.
The first fact to face is thatUNIX was not developed with security, in any realistic sense, in mind; this fact
alone guarantees a vast number of holes. (Actually the same statement can be made with respect to most
systems.) The area of security in whichUNIX is theoretically weakest is in protecting against crashing or at
least crippling the operation of the system. The problem here is not mainly in uncritical acceptance of bad
parameters to system calls— there may be bugs in this area, but none are known— but rather in lack of
checks for excessive consumption of resources. Most notably, there is no limit on the amount of disk stor-
age used, either in total space allocated or in the number of files or directories. Here is a particularly ghast-
ly shell sequence guaranteed to stop the system:

while : ; do
mkdir x
cd x

done

Bell Labo-
ratories

Subject:

On the Security of UNIX Case--- File-

date: June
10, 1977

from:

Dennis
M. Ritchie

TM:

MEMORANDUM FOR FILE

Recently there has been much interest in the security aspects of operating systems and software.
At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of
security which can be provided under the

Either a panic will occur because all the i-nodes on the device are used up, or all the disk blocks will be
consumed, thus preventing anyone from writing files on the device.
In this version of the system, users are prevented from creating more than a set number of processes simul-
taneously, so unless users are in collusion it is unlikely that any one can stop the system altogether. Howev-
er, creation of 20 or so CPU or disk-bound jobs leaves few resources available for others. Also, if many
large jobs are run simultaneously, swap space may run out, causing a panic.
It should be evident that excessive consumption of disk space, files, swap space, and processes can easily
occur accidentally in malfunctioning programs as well as at command level. In factUNIX is essentially de-
fenseless against this kind of abuse, nor is there any easy fix. The best that can be said is that it is generally
fairly easy to detect what has happened when disaster strikes, to identify the user responsible, and take ap-
propriate action. In practice, we have found that difficulties in this area are rather rare, but we have not
been faced with malicious users, and enjoy a fairly generous supply of resources which have served to
cushion us against accidental overconsumption.

UNIX†

†UNIX is a Trademark of Bell Laboratories.



-- --

- 2 -

The picture is considerably brighter in the area of protection of information from unauthorized perusal and
destruction. Here the degree of security seems (almost) adequate theoretically, and the problems lie more
in the necessity for care in the actual use of the system.
EachUNIX file has associated with it eleven bits of protection information together with a user identifica-
tion number and a user-group identification number (UID and GID). Nine of the protection bits are used to
specify independently permission to read, to write, and to execute the file to the user himself, to members
of the user’s group, and to all other users. Each process generated by or for a user has associated with it an
effective UID and a real UID, and an effective and real GID. When an attempt is made to access the file for
reading, writing, or execution, the user process’s effective UID is compared against the file’s UID; if a
match is obtained, access is granted provided the read, write, or execute bit respectively for the user himself
is present. If the UID for the file and for the process fail to match, but the GID’s do match, the group bits
are used; if the GID’s do not match, the bits for other users are tested. The last two bits of each file’s pro-
tection information, called the set-UID and set-GID bits, are used only when the file is executed as a pro-
gram. If, in this case, the set-UID bit is on for the file, the effective UID for the process is changed to the
UID associated with the file; the change persists until the process terminates or until the UID changed again
by another execution of a set-UID file. Similarly the effective group ID of a process is changed to the GID
associated with a file when that file is executed and has the set-GID bit set. The real UID and GID of a pro-
cess do not change when any file is executed, but only as the result of a privileged system call.
The basic notion of the set-UID and set-GID bits is that one may write a program which is executable by
others and which maintains files accessible to others only by that program. The classical example is the
game-playing program which maintains records of the scores of its players. The program itself has to read
and write the score file, but no one but the game’s sponsor can be allowed unrestricted access to the file lest
they manipulate the game to their own advantage. The solution is to turn on the set-UID bit of the game
program. When, and only when, it is invoked by players of the game, it may update the score file but ordi-
nary programs executed by others cannot access the score.
There are a number of special cases involved in determining access permissions. Since executing a direc-
tory as a program is a meaningless operation, the execute-permission bit, for directories, is taken instead to
mean permission to search the directory for a given file during the scanning of a path name; thus if a direc-
tory has execute permission but no read permission for a given user, he may access files with known names
in the directory, but may not read (list) the entire contents of the directory. Write permission on a directory
is interpreted to mean that the user may create and delete files in that directory; it is impossible for any user
to write directly into any directory.
Another, and from the point of view of security, much more serious special case is that there is a ‘‘super
user’’ who is able to read any file and write any non-directory. The super-user is also able to change the
protection mode and the owner UID and GID of any file and to invoke privileged system calls. It must be
recognized that the mere notion of a super-user is a theoretical, and usually practical, blemish on any pro-
tection scheme.
The first necessity for a secure system is of course arranging that all files and directories have the proper
protection modes. Traditionally,UNIX software has been exceedingly permissive in this regard; essentially
all commands create files readable and writable by everyone. In the current version, this policy may be eas-
ily adjusted to suit the needs of the installation or the individual user. Associated with each process and its
descendants is a mask, which is in effectand-ed with the mode of every file and directory created by that
process. In this way, users can arrange that, by default, all their files are no more accessible than they wish.
The standard mask, set bylogin, allows all permissions to the user himself and to his group, but disallows
writing by others.
To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to make one’s files
inaccessible to others. The lack of sufficiency could follow from the existence of set-UID programs created
by the user and the possibility of total breach of system security in one of the ways discussed below (or one
of the ways not discussed below). For greater protection, an encryption scheme is available. Since the edi-
tor is able to create encrypted documents, and thecrypt command can be used to pipe such documents into
the other text-processing programs, the length of time during which cleartext versions need be available is
strictly limited. The encryption scheme used is not one of the strongest known, but it is judged adequate, in
the sense that cryptanalysis is likely to require considerably more effort than more direct methods of read-
ing the encrypted files. For example, a user who stores data that he regards as truly secret should be aware



-- --

- 3 -

that he is implicitly trusting the system administrator not to install a version of the crypt command that
stores every typed password in a file.
Needless to say, the system administrators must be at least as careful as their most demanding user to place
the correct protection mode on the files under their control. In particular, it is necessary that special files be
protected from writing, and probably reading, by ordinary users when they store sensitive files belonging to
other users. It is easy to write programs that examine and change files by accessing the device on which the
files live.
On the issue of password security,UNIX is probably better than most systems. Passwords are stored in an
encrypted form which, in the absence of serious attention from specialists in the field, appears reasonably
secure, provided its limitations are understood. In the current version, it is based on a slightly defective ver-
sion of the Federal DES; it is purposely defective so that easily-available hardware is useless for attempts at
exhaustive key-search. Since both the encryption algorithm and the encrypted passwords are available, ex-
haustive enumeration of potential passwords is still feasible up to a point. We hav e observed that users
choose passwords that are easy to guess: they are short, or from a limited alphabet, or in a dictionary. Pass-
words should be at least six characters long and randomly chosen from an alphabet which includes digits
and special characters.
Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For example: write a
program which types out ‘‘login: ’’ on the typewriter and copies whatever is typed to a file of your own.
Then invoke the command and go away until the victim arrives.
The set-UID (set-GID) notion must be used carefully if any security is to be maintained. The first thing to
keep in mind is that a writable set-UID file can have another program copied onto it. For example, if the
super-user(su) command is writable, anyone can copy the shell onto it and get a password-free version of
su. A more subtle problem can come from set-UID programs which are not sufficiently careful of what is
fed into them. To take an obsolete example, the previous version of themail command was set-UID and
owned by the super-user. This version sent mail to the recipient’s own directory. The notion was that one
should be able to send mail to anyone even if they want to protect their directories from writing. The trou-
ble was thatmail was rather dumb: anyone could mail someone else’s private file to himself. Much more
serious is the following scenario: make a file with a line like one in the password file which allows one to
log in as the super-user. Then make a link named ‘‘.mail’’ to the password file in some writable directory
on the same device as the password file (say /tmp). Finally mail the bogus login line to /tmp/.mail; You can
then login as the super-user, clean up the incriminating evidence, and have your will.
The fact that users can mount their own disks and tapes as file systems can be another way of gaining
super-user status. Once a disk pack is mounted, the system believes what is on it. Thus one can take a
blank disk pack, put on it anything desired, and mount it. There are obvious and unfortunate consequences.
For example: a mounted disk with garbage on it will crash the system; one of the files on the mounted disk
can easily be a password-free version ofsu; other files can be unprotected entries for special files. The on-
ly easy fix for this problem is to forbid the use ofmount to unprivileged users. A partial solution, not so re-
strictive, would be to have themount command examine the special file for bad data, set-UID programs
owned by others, and accessible special files, and balk at unprivileged invokers.


