6114A Precision Power Supply








6114A Precision Power Supply

Das Hewlett Packard 6114A Precision Power Supply ist ein in zwei Bereichen automatisch umschaltbares lineargeregeltes Netzteil, von 0V-20V und 20V-40V. Das besondere an diesem Gerät ist die Art der Spannungseinstellung, kein Potentiometer, sondern ein diskreter Stufenwählschalter, der eine ganze Reihe von Päzisionswiderständen intern einstellt, fünf Drahtwiderstände davon sogar in der 0.01% Genauigkeits Klasse. Es besitzt Schutzfunktionen wie eine einstellbare Overvoltage Protection und eine einstellbare Strombegrenzung. Die Schaltungstechnik besteht aus diskreten Serienspannungsregler mit Bipolar Transistoren, im Einsatz drei Operationsverstärker, davon einer als Spannungsregler, einer als Stromregler und einer für die Over Voltage Protection.

Die internen Referenzspannungen sind 1N825 und sogar eine 1N829 Temperatur Compensated Zenerdiode, die 1N829er Serie gehört zur Klasse der stabilsten Zenerdioden, einige bessere ältere Multimeter basieren darauf.  Dieser Zenerdiodentyp wird nominal betrieben bei 7.5mA und hat dann ca. 6.2V Zenerspannung. Im Prinzip ist das eine 5.6V Zenerdiode und eine normale 0.7V Siliziumdiode in Serie, deren positiver und negativer Temperaturkoeffizient sich genau bei diesem Strom fast zu Null kompensieren, im Idealfall wird der Strom auf den Null TC abgetrimmt. Als Datenblattangabe finden sich für diesen Diodeart ein Temperaturkoeffizient in der Größenordnung von 0.005%/°C, das sind 5ppm/°C.

Das Gerät hat einen zweistufigen Spannungsregler aus getrennten Gleichrichtern aufgebaut, einer für 0-20V, der andere für 20-40V.  Die beiden Regler sind über eine Zwei in Eins Diodenschaltung und eine Kontrollschaltung miteinander verbunden.

This is a Precision Power Supply built-up in transistor circuits with three control operational amplifiers, one for the output voltage control, one for the adjustable current limit and one for the adjustable over voltage protection.

This over voltage protection can be adjusted as follows:

The current limit operates together with the voltage loop in an OR function, when the current limit reached an decreasing load resistance will fold back the output voltage. The instrument uses a 1N829 6.2V zener voltage reference and digital selectable 0.01% precision gain setting resistors. The instrument operates with sense terminals on the back side.







Die Schalter sind leicht umschaltbar mit klarem Druckpunkt



Das Gerät habe ich in einem defekten Zustand bekommen, es wartet auf die Reparatur und ein Stück weit ist es schon mal zerlegt.
Instrument need repair



              
Im linken Bild der liegende gelbe Elko und der Draht gehören original natürlich nicht dazu, das war der Reparaturversuch des Vorgängers, der keine Zeit mehr hatte das Gerät zu reparieren. Zum Reparieren werde ich das Gerät einmalig komplett zerlegen und zuerst vollständig reinigen. Ohne Gehäuse wird es elektrisch wieder zusammengebaut, die Transistoren am Kennlinienschreiber getestet und die Elkos überprüft. Die Fehlersuche sollte zerlegt und damit gut zugänglich machbar sein. Das kleine graue Kästchen im rechten Bild ist ein Messtrafo.

Some repair by the former owner, was not successful.



Control Board

Das Reference Control Board A2, es beinhaltet die Referenzspannung im linken Teil, die schwarze VR1 Diode ist die 1N829 von HP selbst hergestellt (wenn ich mich nicht vertan habe im Manual lesen). Der Operationsverstärker AD18260090 ist der Regelverstärker, der 1k Trimmer stellt die Referenzspannung auf ihren Feinwert ein. Date Code der Operationsverstärker wahrscheinlich Jahr 1980 Woche 44. Die Leuchtdioden rechts unten und das blaue Poti sind nicht original.

This is the A2 contol loop and voltage reference board. The red LEDs and the blue potentiometer are not original.





Die schwarze Diode in der Bildmitte ist die 1N829, darüber der Regelverstärker, am Ausgang der Schaltung stehen 16V an, die auf dem Pluspol am Ausgang aufsitzen.

Black diode (middle) the voltage reference 1N829 with the control amplifier, output voltage reference circuit 16V, connected upon the plus power output.




Mehr zu den Leuchtdioden später.

Why this non-original LEDs described later.



Eine pdf Datei des eingescannten originalen Service Manual stellt der Hersteller auf seiner Webseite unter Technical Support zur Verfügung. Begrüßenswert dass der Hersteller für viele seiner nicht mehr hergestellten älteren Produkte diesen Service zur Verfügung stellt.

The Service Manual is available on the manufactorers website, it's very nice supporting the community with documents for this obsolete instruments.



Power Supply Repair


After power on the instrument showed the error than the output voltage could not setted to more than approximately 20V. Power Supply switched sometimes in overvoltage range.
When changing the current control to lowest levels output voltage increased - sometimes the supply behavioured terrible and the output increased to more than 60 volts.


1. Error

       


Voltage on anode rectifier diode - the capacitor C2 490µF lost capacitance - very easy fault.

Always use a variac AC-line transformer when repairing instruments.


2. Error


Das hier ist ein Klassiker, hier wurde mit ganz wenig zur Verfügung stehender Zeit versucht das Gerät zu reparieren. Eine Kupferleiterbahn war geschmolzen, warum auch immer. Ersetzt wurde sie durch ein Stück freifliegenden Kupferlackdraht, das ist auf Dauer so locker montiert eine vermeidbare Fehlerquelle. Auch der Elko wurde getauscht, ein paar Tropfen Kleber täten der Sache gut. Leider muss immer alles hoppla hopp gehen und das sind die Ergebnisse. Aber lobenswerter weise wurde wenigstens versucht zu retten was am Gerät zu retten ist anstatt es gleich zu entsorgen.

The former owner did a quick repair of a melted PCB track, replaced with a varnished free air-wire, this is not a good idea can cause another error easily, also the replaced electrolytic should be mounted harder.


3. Error


Operational Amplifier Pin 4 (negative Supply) has been removed from PCB from former owner, this is a hint something is wrong either with this circuit or the voltage.

The partnumber is labeled the manufactorer. In the Serive Manual Replaceable Parts List called ULS 2151D Sprague.
I could not locate a datasheet but after checking offset trimming pinout and considering date of manufatoring, the amplifier could be from the 741 family.



Replacing the Electrolytic Capacitors


           

Measure the electrolytics on a Capacitance and ESR meter, here only C2 lost its capacitance, the others worked well.
Built-in again the big ones, all others replaced by high quality low ESR electrolytic capacitors, replaced capacitance increased by factor two.

When replacing capacitors always think well what you are doing.
Consider a higher capacitance increase rectified peak currents, a too large capacitance can damage active circuits. Other capacitors can easily cause oscillations in control loops and of course take care for the applied working and peak voltage.

Consider also the layout, sometimes changing parts is a chance improving a PCB by applying a another connection scheme. Consider mechanical aspects, many times it's hard getting original spare parts, using parts which normally don't fit is not a problem, but mount them in way causing no future error.

After replacing the capacitors the voltage control loop worked but the current control loop continous not to work . The -14.3V supply voltage had problems, reaching ony -8V.


4. Error


This Tantal Capacitor on the output voltage pins has been destroyed, the output increased to more than 60V, resulting in a permanent short-circuit. Not so easy to find, because there are many parts connected between + and -.
I could locate the short-circuit by measuring a small voltage drop on the PCB.



5. Error


This was a replacement for VR4.
VR4 should be a 6.2V temperature compensated voltage reference diode 1N825.
The 1N825 is also a very temperature stable element, the 825 reaches approximately 15ppm compared to the 5ppm of a 829.

During a former repair the  owner had not an 1N825 spare part, he was clever enough to find a solution.
Three red LED in series working as approx. a 6 volt diode, but with sometimes undefined reverse voltage.
Paralling a reversed standard silicon diode cause a 0.7V reverse voltage, not shown on a 821.




1N821 my replacement for the 1N825.
A 821 was in my spare part box, don't reach the TC perfomance of a 825, but good enough.




Three LEDs in series on a Curve Tracer.
LED's don't reach the 6.2V of the 1N821.
Dynamic resistance is too flat and not very good in regulation.
I've tested the LED TC on the curver trace with a cigarette lighter, TC was a little negative - not bad -  TC seems to be better than a standard 6.2V zener (not the 82X family).
Difficult to say the plastic package isolates the LED cristal better from heat than a small zener.
The dynamic resistance is worser compared to any other zener diode in these voltage range.


   
left - three red LEDs in series ______________ right - 1N821 temperature compensated zener

Of course replacing the LED was not the solution for the problem with the weak -14.3V supply, made the power supply only better.



What was the reason for the weak -14.3V ?


6. Error

The two black small signal diodes made a low ohm connection in the -14.3V supply.


Sum of all replaced parts (without electrolytics.) Normally these old types of tantalum don't make problems even after many years, one was failed by overvoltage. The other were only replaced when searching the -14.3V fault.



   
These both small diodes converted to resistor.  3.3 ohms and 14 ohms.

It took me a long time to find the fault, both diodes were not mentioned in the manual - the manual I used did not fit to the serial number of my instrument and I haven't check.


After replacing -14.3V supply ok.


Replacing older operational amplifier types.






   

Changing operational amplifiers can be a terrible task getting the control loop stable again. First I tried some DIL-8 types, later I choosed some good performance TO-5 types. Their pinout and offset trimming pinout was similar to the old 741 family. All three control loops are stable over load, time and temperature, these are three things you must observe. The used Difet has much lower input bias currents and noise, higher open loop gain and less offset voltage and drift and the speed is higher, but be careful with high speed types some tend to oscillate. - choosed type is well suitable for integrator functions. I won't recommend the type, try yourself there are many available types on the market. But don't make a hype by changing op amps, the circuit worked also nicely with the old 741 family.



The offset trimming range could be also decreased. This made the pods more easy adjustable. The added series resistor reached the recommended value of the trimmer in the datasheet.  The fix resistors should be also more stable than the trimmers alone.



Calibration Procedure


This chapter shows how to calibrate the instrument.

For a accurate calibration please read the manufactorer manual.

The description here follows close to the instruction manual - but not in all items.

Always observe all jumpers on the photos - I can't a warranty that I not forget onetimes to mention when jumoers shall be removed or replaced again.
The photos are correct, the text max be not. I repeat it again, use the original manual for a valid calibration.


1. Mechanical Meter Zero


Turn OFF instrument, insert a sharp pointed object in the black slider and move pointer position clockwise until the pointer will reach zero point.
Move pointer slightly counterclockwise to free the pointer from suspension.

2. Gross Current Limit Adjustment

Use a 33 ohma load at 40VDC output under lowest AC-line voltage





An AC variac is a recommended source for repair and calibration.



34 ohm load resistor



Connect load on the rear output. The rear output is sensed., the front output not.

Instrument has many programming possibilties in current and voltage through external analog settings, difficult to describe in detail, read manual.




Keep the load cool - 47 watts applied power.



Set output voltage to 40V



Adjust cross current limit on the trimmer in the middle



Set Front Panel Meter to AMPS position.
Turn CURRENT control full clockwise, adjust trimmer so that current mode LED just starts lights at 60% of maximum rated current.
I removed the load after adjustment.


3. Reference Supply


Warm-up a DMM with a high accuracy. Warm-up the power supply for at least 30 minutes.


Measure voltage on the temperature compensated zener voltage reference against + output.




The meter should read a voltage greater than 6V. If not read the instruction in the manual what to do.
With 6.3V here the zener current is large enough that the 1N829 will operate with a recommended operating current range.

If the diode operates under too low currents, important parameter worsen:

4. Zero Output Voltage


Short out the voltage control loop by a short-circuit (yellow wire)

Adjust trimmer (green) R13 on board A2  for a -450+/-50µV between +S and -S.

(Note: I adjusted the voltage to exactly zero voltage not to the recommended value  in the manual).

This trimmer sets the opamp offset voltage of the voltage control loop to zero (with my adjustment).

Zero voltage values differing, depending if measured on rear or front terminals  - I choosed the rear terminals.



I hope your are satisfied.

Observe for some minutes for a  stable voltage, low frequency oscillations and offset drift can be detected. 
In this measurement the yellow wire applies a zero voltage to the noninverting input of the voltage loop operational amplifier.
The +output applies on the inverting op input, when both voltages are equal the loop is in regulation. The trimmer sets the operational amplifer offset voltage to zero.



5. Voltage Programming Current

Turn power supply OFF.

Connect the yellow wire as shown.
Remove jumper between A2 and A3
One side of the yellow wire is connected to a high precision 1 kohm series resistor conncted to -S.
(here a two paralleled 2k used).
Apply the high input impedance DMM across the resistor.
Turn ON supply.
Adjust A2 R5 (long black trimmer near 1N829) for a reading of 0.5V +/-5µV
Turn OFF supply
Replace A2 to A3 jumper.



I hope your are satisfied.
This adjustment set the current flowing through the digital output voltage setting resistors.

If this voltage is not stable, then there are problems in the +16V reference voltage loop. Observe this value for stability, all output voltages depending on this voltage.

This measurement sets the scale factor of the output voltage control loop.  This constant voltage drives a constant current through the digital selectable gain setting resistors.

Resulting voltage across gain setting resistors program the voltage control loop.


6. Voltmeter Calibration

Adjust A1  R22 (right trimmer near the front panel in the right corner) for a corret front panel voltmeter reading.


7. Zero Output Current


Turn supply ON.
Program output for 2 volts.
Place the yellow wire.
Connect a 1 ohm resistor and measure voltage across resistor.
Adjust A2 R12 (green trimmer) to 0V+/-10µV on DMM
Turn supply OFF.
Remove yellow wire.

Don't use that long lead wires like shown, causing error.

Current control loop set to a zero output current. Trimmer R12 (U3 opamp offset contro)l sets the current in the load to zero.



I hope your are satisfied.

Zero Current = 0.003mV/1ohm = 3µA

Observe this value for stability within some minutes.


8. Current Programming Current

This adjustment will set the programming constant current flowing through the CURRENT MODE potentiometer.
A diode-transistor current mirror generates a 1mA current.

The CURRENT MODE  potentiomer has a nominal 1k resistance, with a 1mA current 1 volt drops - and this voltage set the current loop on the noninverting opamp input.
The internal output current sensing resistor has 500mOhm and applies on the inverting opamp input.

With 2A output current:

2A*500ohm=1 volt
1mA*1kohm=1 volt

When both voltages are equal the current control loop is in regulation.

This adjustment ensures that a maximum set clockwise CURRENT MODE 1k potentiomer will set exactly the output current limit to 2A.
For example when using a 1k 10-turn potentiometer the current limit could be easily calibrated to 200mA/360°.

Such a calibration don't work - 100 mOhm resistor with long thin wires.

Turn OFF supply
Remove jumper between A6 and A7.
Connect 100 mOhm across output.
Connect a precision 1k resistor A6 and + output
DMM on output voltage
Program for 2 volts and turn ON
Adjust A2 R19 (blue trimmer) for a reading -0.2V+/-250µV




Resistor in 4W measurement at the end of the white wires , a bad configuration, the -0.2V can not be reached. This method works only with precise 0.1 ohm between + output and -output.


I choosed another method:

Measure the voltage drop across the 1k precision resistor, if A2 R19 exactly adjusts a 1V drop, the current limit will reach 2A with a 1k potentiometer in maximum clockwise position.

This was a good example:

If you calibrate something - always think about what you are doing - try to understand the circuit first.


9. Ammeter Calibration


Adjust A1 R17 (trimmer closest to front panel meter) for a correct reading, compare and measure the load current with a DMM.




Accuracy Measurements

Linearity without load

Power Supply and DMM (34401A) warm-up for 1 hour.

This plot shows the Output Voltage Error vs. Adjusted Voltage



This plot shows the Output Voltage Error vs. Adjusted Voltage with a slightly readjusted internal reference voltage trimmer R5 on board A2

The maximum error reaches:
+800µV for a 20 volts output.
-600µV for a 9 volts output.

This is an accuracy within:
+0.004% (+40ppm)
and
-0.006% (-60ppm)

This power supply reaches almost absolute 16 bit accuracy.

1LSB=40V/65536=610µV

After repeating it would be a good idea trying to fine trim the digital resistor devider with parallel or series resistors.
A trimming could remove the large jump between 19V and 20V and an absolute 16 bit performance could be reached.
This was a time demanding measurement applying 1 volt steps and writing down the results.



Linearity with a 34 ohm load

The load will cause maximum 1.2A and 48 watts power
.
34 ohm load on a heatsink



This is not a good sense and load connection, the wires are under the srcews.

Power Supply and DMM (34401A) warm-up for 2 hours.

The voltage drop in the terminals with rising current.

Manufactorer specifies a 50µOhm output resistance, under a 1.2A current cause this a voltage drop of only 60µV. The bad connection is the reason for the large error.


Dynamic Measurements

Output noise with and without load


Using a 7A22 set to a 10Hz - 1MHz bandpass
Oscilloscope powered with the AC variac, 6114A on AC-line



Using shielded cables. These kind of maesurement are difficult, you never know if measure real signals or parasitic ground loop signals.
Try different grounding schemes, I haven't tried other ground and shielding configrations here.



No load
(Oscillogram looks similar to any output voltage).



34 ohms load at 10 volts
(Unexpected,  ripple had become lower with load).




Changing to a 7A13 Amplifier Plug-In,.
Under use the internal adjustable DC voltage on the inverting input.



34 ohms load at 10 volts.
7A13 set to bandwidth DC to appr. 100 MHz (full range)



34 ohms load at 10 volts.
7A13 set to bandwidth DC to 5 MHz.


Output with a switched load

   
34 ohms load switched by a small MOSFET controled by a pulse generator. Output voltage probe measured directly on the sensed outputs.


  
output set for 12 volts



Using a 7A13 in AC position up to full bandwith and a second intensified timebase.


   
Upper Trace AC coupled power supply output, 100µs/Div.
Lower Trace zoom of intensified zone, 2µs/Div.

The inductance of the load wire-wounded load resistance, the wires togehter with capacitances from the MOSFET and the output creat a  LC tank oscillating at approximately 800kHz resonance frequency.
The power supply contol can't reject this higher frequency contents, this is an excepted result due to the integrating precision control loop character.



Set the puls generator



Gate Source Voltage



Drain Source Voltage
With this parasitic-LC load (34 ohms) appearing very high switching transients of more than 5 volts.



Power Supply Output voltage
Control loop rejects this higher frequency contents from 5 volts to approximately 600mV.


Conclusion

I like this fine power supply, handy size, current control, overvoltage protection, high accuracy and less ripple make it a useful instrument for the labor.

It was much work to repair all the faults.

When I remember repairing this instrument costs me about 30 hours of hard working, including the time for understanding circuit and calibration, not counting the hours of writing this note.



www.amplifier.cd    

Test Equipment - Main Gallery       HP - Gallery 

Impressum und Haftungsausschluss