
Lex − A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt

Bell Laboratories
Murray Hill, New Jersey 07974

AABBSSTTRRAA CCTT

Lex helps write programs whose control flow is directed by instances of regular expressions in the input
stream. It is well suited for editor-script type transformations and for segmenting input in preparation for a
parsing routine.
Lex source is a table of regular expressions and corresponding program fragments. The table is translated to a

program which reads an input stream, copying it to an output stream and partitioning the input into strings
which match the given expressions. As each such string is recognized the corresponding program fragment is
executed. The recognition of the expressions is performed by a deterministic finite automaton generated by
Lex. The program fragments written by the user are executed in the order in which the corresponding regular
expressions occur in the input stream.
The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest match

possible at each input point. If necessary, substantial lookahead is performed on the input, but the input stream
will be backed up to the end of the current partition, so that the user has general freedom to manipulate it.
Lex can generate analyzers in either C or Ratfor, a language which can be translated automatically to portable

Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS systems. This manual, however,
will only discuss generating analyzers in C on the UNIX system, which is the only supported form of Lex under
UNIX Version 7. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler-com-
piler system.

July 21, 1975

-- --

Lex − A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt

Bell Laboratories
Murray Hill, New Jersey 07974

Table of Contents
1. Introduction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10

10. Left Context Sensitivity. 11
11. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
15. References. 13

1. Introduction.
Lex is a program generator designed for lexical pro-
cessing of character input streams. It accepts a high-
level, problem oriented specification for character
string matching, and produces a program in a general
purpose language which recognizes regular expres-
sions. The regular expressions are specified by the user
in the source specifications given to Lex. The Lex writ-
ten code recognizes these expressions in an input
stream and partitions the input stream into strings
matching the expressions. At the boundaries between
strings program sections provided by the user are
executed. The Lex source file associates the regular
expressions and the program fragments. As each
expression appears in the input to the program written
by Lex, the corresponding fragment is executed.
The user supplies the additional code beyond expres-
sion matching needed to complete his tasks, possibly
including code written by other generators. The pro-
gram that recognizes the expressions is generated in the
general purpose programming language employed for
the user’s program fragments. Thus, a high level
expression language is provided to write the string
expressions to be matched while the user’s freedom to
write actions is unimpaired. This avoids forcing the
user who wishes to use a string manipulation language
for input analysis to write processing programs in the
same and often inappropriate string handling language.
Lex is not a complete language, but rather a generator
representing a new language feature which can be
added to different programming languages, called
‘‘host languages.’’ Just as general purpose languages

can produce code to run on different computer hard-
ware, Lex can write code in different host languages.
The host language is used for the output code generated
by Lex and also for the program fragments added by
the user. Compatible run-time libraries for the different
host languages are also provided. This makes Lex
adaptable to different environments and different users.
Each application may be directed to the combination of
hardware and host language appropriate to the task, the
user’s background, and the properties of local imple-
mentations. At present, the only supported host lan-
guage is C, although Fortran (in the form of Ratfor [2]
has been available in the past. Lex itself exists on
UNIX, GCOS, and OS/370; but the code generated by
Lex may be taken anywhere the appropriate compilers
exist.
Lex turns the user’s expressions and actions (called
ssoouurr ccee in this memo) into the host general-purpose lan-
guage; the generated program is namedyyyyllee xx.. The
yyyyllee xx program will recognize expressions in a stream
(called iinnppuutt in this memo) and perform the specified
actions for each expression as it is detected. See Figure
1.

Source→ Lex → yylex

Input → yylex → Output

An overview of Lex

-- --

LEX−2

Figure 1
For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
[\t]+$;

is all that is required. The program contains a %%
delimiter to mark the beginning of the rules, and one
rule. This rule contains a regular expression which
matches one or more instances of the characters blank
or tab (written \t for visibility, in accordance with the C
language convention) just prior to the end of a line.
The brackets indicate the character class made of blank
and tab; the + indicates ‘‘one or more ...’’; and the $
indicates ‘‘end of line,’’ as in QED. No action is speci-
fied, so the program generated by Lex (yylex) will
ignore these characters. Everything else will be copied.
To change any remaining string of blanks or tabs to a
single blank, add another rule:

%%
[\t]+$;
[\t]+ printf(" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of
the string of blanks or tabs whether or not there is a
newline character, and executing the desired rule
action. The first rule matches all strings of blanks or
tabs at the end of lines, and the second rule all remain-
ing strings of blanks or tabs.
Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a lexical level.
Lex can also be used with a parser generator to perform
the lexical analysis phase; it is particularly easy to
interface Lex and Yacc [3]. Lex programs recognize
only regular expressions; Yacc writes parsers that
accept a large class of context free grammars, but
require a lower level analyzer to recognize input tokens.
Thus, a combination of Lex and Yacc is often appropri-
ate. When used as a preprocessor for a later parser gen-
erator, Lex is used to partition the input stream, and the
parser generator assigns structure to the resulting
pieces. The flow of control in such a case (which might
be the first half of a compiler, for example) is shown in
Figure 2. Additional programs, written by other gener-
ators or by hand, can be added easily to programs writ-
ten by Lex.

lexical grammar
rules rules

↓ ↓
Lex Yacc

↓ ↓
Input → yylex → yyparse → Parsed input

Lex with Yacc

Figure 2
Yacc users will realize that the nameyyyyllee xx is what Yacc
expects its lexical analyzer to be named, so that the use
of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from
the regular expressions in the source [4]. The automa-
ton is interpreted, rather than compiled, in order to save
space. The result is still a fast analyzer. In particular,
the time taken by a Lex program to recognize and parti-
tion an input stream is proportional to the length of the
input. The number of Lex rules or the complexity of
the rules is not important in determining speed, unless
rules which include forward context require a signifi-
cant amount of rescanning. What does increase with
the number and complexity of rules is the size of the
finite automaton, and therefore the size of the program
generated by Lex.
In the program written by Lex, the user’s fragments
(representing theaaccttiioonnss to be performed as each regu-
lar expression is found) are gathered as cases of a
switch. The automaton interpreter directs the control
flow. Opportunity is provided for the user to insert
either declarations or additional statements in the rou-
tine containing the actions, or to add subroutines out-
side this action routine.
Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example,
if there are two rules, one looking foraabb and another
for aabbccddeeffgg , and the input stream isaabbccddeeffhh , Lex will
recognizeaabb and leave the input pointer just beforeccdd..
.. .. Such backup is more costly than the processing of
simpler languages.

2. Lex Source.
The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often
omitted. The second%%%% is optional, but the first is
required to mark the beginning of the rules. The abso-
lute minimum Lex program is thus

%%
(no definitions, no rules) which translates into a pro-
gram which copies the input to the output unchanged.
In the outline of Lex programs shown above, therruulleess
represent the user’s control decisions; they are a table,
in which the left column containsrr eegguullaarr eexxpprreessssiioonnss
(see section 3) and the right column containsaaccttiioonnss,,
program fragments to be executed when the expres-
sions are recognized. Thus an individual rule might
appear

integer printf("found keyword INT");
to look for the stringiinnttee ggeerr in the input stream and
print the message ‘‘found keyword INT’’ whenever it
appears. In this example the host procedural language
is C and the C library functionpprriinnttff is used to print the
string. The end of the expression is indicated by the
first blank or tab character. If the action is merely a
single C expression, it can just be given on the right
side of the line; if it is compound, or takes more than a

-- --

LEX−3

line, it should be enclosed in braces. As a slightly more
useful example, suppose it is desired to change a num-
ber of words from British to American spelling. Lex
rules such as

colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enough,
since the wordppeettrr oolleeuumm would becomeggaasseeuumm; a
way of dealing with this will be described later.

3. Lex Regular Expressions.
The definitions of regular expressions are very similar
to those in QED [5]. A regular expression specifies a
set of strings to be matched. It contains text characters
(which match the corresponding characters in the
strings being compared) and operator characters (which
specify repetitions, choices, and other features). The
letters of the alphabet and the digits are always text
characters; thus the regular expression

integer
matches the stringiinnttee ggeerr wherever it appears and the
expression

a57D
looks for the stringaa5577DD..
OOppeerr aattoorrss.. The operator characters are

" \ [] ˆ − ? . ∗ + | () $ / { } % < >
and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi-
cates that whatever is contained between a pair of
quotes is to be taken as text characters. Thus

xyz"++"
matches the stringxxyyzz++++ when it appears. Note that a
part of a string may be quoted. It is harmless but
unnecessary to quote an ordinary text character; the
expression

"xyz++"
is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text char-
acter, the user can avoid remembering the list above of
current operator characters, and is safe should further
extensions to Lex lengthen the list.
An operator character may also be turned into a text
character by preceding it with \ as in

xyz\+\+
which is another, less readable, equivalent of the above
expressions. Another use of the quoting mechanism is
to get a blank into an expression; normally, as
explained above, blanks or tabs end a rule. Any blank
character not contained within [] (see below) must be
quoted. Several normal C escapes with \ are recog-
nized: \n is newline, \t is tab, and \b is backspace. To
enter \ itself, use \\. Since newline is illegal in an
expression, \n must be used; it is not required to escape
tab and backspace. Every character but blank, tab,
newline and the list above is always a text character.
CChhaarr aacctteerr ccllaasssseess.. Classes of characters can be speci-
fied using the operator pair []. The construction[[aabbcc]]
matches a single character, which may beaa , bb , or cc .

Within square brackets, most operator meanings are
ignored. Only three characters are special: these are \−
and ˆ. The− character indicates ranges. For example,

[a−z0−9<>_]
indicates the character class containing all the lower
case letters, the digits, the angle brackets, and under-
line. Ranges may be given in either order. Using−
between any pair of characters which are not both
upper case letters, both lower case letters, or both digits
is implementation dependent and will get a warning
message. (E.g., [0−z] in ASCII is many more charac-
ters than it is in EBCDIC). If it is desired to include the
character− in a character class, it should be first or last;
thus

[−+0−9]
matches all the digits and the two signs.
In character classes, the ˆ operator must appear as the
first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to
the computer character set. Thus

[ˆabc]
matches all characters except a, b, or c, including all
special or control characters; or

[ˆa−zA−Z]
is any character which is not a letter. The \ character
provides the usual escapes within character class brack-
ets.
AArrbbiittrr aarryy cchhaarraacctteerr.. To match almost any character,
the operator character

.
is the class of all characters except newline. Escaping
into octal is possible although non-portable:

[\40−\176]
matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).
OOppttiioonnaall eexxpprreessssiioonnss.. The operator?? indicates an
optional element of an expression. Thus

ab?c
matches eitheraacc or aabbcc .
RReeppeeaatteedd eexxpprreessssiioonnss.. Repetitions of classes are indi-
cated by the operators∗∗ and++ .

aa∗∗
is any number of consecutiveaa characters, including
zero; while

a+
is one or more instances ofaa.. For example,

[a−z]+
is all strings of lower case letters. And

[A−Za−z][A−Za−z0−9]∗
indicates all alphanumeric strings with a leading alpha-
betic character. This is a typical expression for recog-
nizing identifiers in computer languages.
AAlltteerrnnaattiioonn aanndd GGrroouuppiinngg.. The operator | indicates
alternation:

(ab | cd)
matches eitheraabb or ccdd.. Note that parentheses are used
for grouping, although they are not necessary on the
outside level;

-- --

LEX−4

ab | cd
would have sufficed. Parentheses can be used for more
complex expressions:

(ab | cd+)?(ef)∗
matches such strings asaabbeeffeeff , eeffeeffeeff , ccddeeff , or ccdddddd ;
but notaabbcc , aabbccdd , or aabbccddeeff .
CCoonnttee xxtt sseennssiittiivviittyy.. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this areˆ̂ and$$. If the first character of an expression
is ˆ̂ , the expression will only be matched at the begin-
ning of a line (after a newline character, or at the begin-
ning of the input stream). This can never conflict with
the other meaning of̂̂, complementation of character
classes, since that only applies within the [] operators.
If the very last character is$$, the expression will only
be matched at the end of a line (when immediately fol-
lowed by newline). The latter operator is a special case
of the// operator character, which indicates trailing con-
text. The expression

ab/cd
matches the stringaabb , but only if followed byccdd.. Thus

ab$
is the same as

ab/\n
Left context is handled in Lex byssttaarrtt ccoonnddiittiioonnss as
explained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
xx,, the rule should be prefixed by

<x>
using the angle bracket operator characters. If we con-
sidered ‘‘being at the beginning of a line’’ to be start
conditionOONNEE , then the ˆ operator would be equivalent
to

<ONE>
Start conditions are explained more fully later.
RReeppeettiittiioonnss aanndd DDeefifinniittiioonnss.. The operators {} specify
either repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{digit}
looks for a predefined string namedddiiggiitt and inserts it
at that point in the expression. The definitions are
given in the first part of the Lex input, before the rules.
In contrast,

a{1,5}
looks for 1 to 5 occurrences ofaa .
Finally, initial %% is special, being the separator for Lex

source segments.

4. Lex Actions.
When an expression written as above ismatched, Lex
executes the corresponding action. This section
describes some features of Lex which aid in writing
actions. Note that there is a default action, which con-
sists of copying the input to the output. This is per-
formed on all strings not otherwise matched. Thus the
Lex user who wishes to absorb the entire input, without
producing any output, must provide rules to match
ev erything. When Lex is being used with Yacc, this is
the normal situation. One may consider that actions are

what is done instead of copying the input to the output;
thus, in general, a rule which merely copies can be
omitted. Also, a character combination which is omit-
ted from the rules and which appears as input is likely
to be printed on the output, thus calling attention to the
gap in the rules.
One of the simplest things that can be done is to ignore
the input. Specifying a C null statement,;; as an action
causes this result. A frequent rule is

[\t\n] ;
which causes the three spacing characters (blank, tab,
and newline) to be ignored.
Another easy way to avoid writing actions is the action
character |, which indicates that the action for this rule
is the action for the next rule. The previous example
could also have been written

" "
"\t"
"\n"

with the same result, although in different style. The
quotes around \n and \t are not required.
In more complex actions, the user will often want to
know the actual text that matched some expression like
[[aa−−zz]]++ . Lex leaves this text in an external character
array namedyyyyttee xxtt.. Thus, to print the name found, a
rule like

[a−z]+ printf("%s", yytext);
will print the string inyyyyttee xxtt.. The C functionpprriinnttff
accepts a format argument and data to be printed; in
this case, the format is ‘‘print string’’ (% indicating
data conversion, andss indicating string type), and the
data are the characters inyyyyttee xxtt.. So this just places the
matched string on the output. This action is so com-
mon that it may be written as ECHO:

[a−z]+ ECHO;
is the same as the above. Since the default action is just
to print the characters found, one might ask why giv e a
rule, like this one, which merely specifies the default
action? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matchesrr eeaadd it will normally
match the instances ofrr eeaadd contained inbbrr eeaadd or
rr eeaaddjjuusstt ; to avoid this, a rule of the form[[aa−−zz]]++ is
needed. This is explained further below.
Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyyylleenngg of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a−zA−Z]+ {words++; chars += yyleng;}
which accumulates incc hhaarrss the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext[yyleng−1]
Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Tw o rou-
tines are provided to aid with this situation. First,
yyyymmoorr ee(()) can be called to indicate that the next input
expression recognized is to be tacked on to the end of

-- --

LEX−5

this input. Normally, the next input string would over-
write the current entry inyyyyttee xxtt.. Second,yyyylleessss ((nn))
may be called to indicate that not all the characters
matched by the currently successful expression are
wanted right now. The argumentnn indicates the num-
ber of characters inyyyyttee xxtt to be retained. Further char-
acters previously matched are returned to the input.
This provides the same sort of lookahead offered by the
/ operator, but in a different form.
EExxaammppllee:: Consider a language which defines a string
as a set of characters between quotation (") marks, and
provides that to include a " in a string it must be pre-
ceded by a \. The regular expression which matches
that is somewhat confusing, so that it might be prefer-
able to write

\"[ˆ"] ∗ {
if (yytext[yyleng−1] ==′\\′)

yymore();
else

... normal user processing
}

which will, when faced with a string such as""aabbcc\\""ddeeff ""
first match the five characters""aabbcc\\ ; then the call to
yyyymmoorr ee(()) will cause the next part of the string,""ddeeff , to
be tacked on the end. Note that the final quote termi-
nating the string should be picked up in the code
labeled ‘‘normal processing’’.
The functionyyyylleessss(()) might be used to reprocess text in
various circumstances. Consider the C problem of dis-
tinguishing the ambiguity of ‘‘=−a’’. Suppose it is
desired to treat this as ‘‘=− a’’ but print a message. A
rule might be
=−[a−zA−Z] {

printf("Operator (=−) ambiguous\n");
yyless(yyleng−1);
... action for =− ...
}

which prints a message, returns the letter after the oper-
ator to the input stream, and treats the operator as
‘‘= −’’. Alternatively it might be desired to treat this as
‘‘= −a’’. To do this, just return the minus sign as well
as the letter to the input:
=−[a−zA−Z] {

printf("Operator (=−) ambiguous\n");
yyless(yyleng−2);
... action for = ...
}

will perform the other interpretation. Note that the
expressions for the two cases might more easily be
written

=−/[A−Za−z]
in the first case and

=/−[A−Za−z]
in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole iden-
tifier to observe the ambiguity. The possibility of
‘‘= −3’’, however, makes

=−/[ˆ \t\n]
a still better rule.

In addition to these routines, Lex also permits access
to the I/O routines it uses. They are:
1)iinnppuutt(()) which returns the next input character;
2)oouuttppuutt((cc)) which writes the charactercc on the output;
and
3)uunnppuutt((cc)) pushes the charactercc back onto the input
stream to be read later byiinnppuutt(())..
By default these routines are provided as macro defini-
tions, but the user can override them and supply private
versions. These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to
or from strange places, including other programs or
internal memory; but the character set used must be
consistent in all routines; a value of zero returned by
iinnppuutt must mean end of file; and the relationship
betweenuunnppuutt and iinnppuutt must be retained or the Lex
lookahead will not work. Lex does not look ahead at
all if it does not have to, but every rule ending in++ ∗∗ ??
or $$ or containing// implies lookahead. Lookahead is
also necessary to match an expression that is a prefix of
another expression. See below for a discussion of the
character set used by Lex. The standard Lex library
imposes a 100 character limit on backup.
Another Lex library routine that the user will some-
times want to redefine isyyyywwrr aapp(()) which is called
whenever Lex reaches an end-of-file. Ifyyyywwrr aapp returns
a 1, Lex continues with the normal wrapup on end of
input. Sometimes, however, it is convenient to arrange
for more input to arrive from a new source. In this
case, the user should provide ayyyywwrr aapp which arranges
for new input and returns 0. This instructs Lex to con-
tinue processing. The defaultyyyywwrr aapp always returns 1.
This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes
end-of-file; the only access to this condition is through
yyyywwrr aapp.. In fact, unless a private version ofiinnppuutt(()) is
supplied a file containing nulls cannot be handled, since
a value of 0 returned byiinnppuutt is taken to be end-of-file.
5. Ambiguous Source Rules.
Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:
1)The longest match is preferred.
2)Among rules which matched the same number of
characters, the rule given first is preferred.
Thus, suppose the rules

integer keyword action ...;
[a−z]+ identifier action ...;

to be given in that order. If the input isiinnttee ggeerrss, it is
taken as an identifier, because[[aa−−zz]]++ matches 8 char-
acters whileiinnttee ggeerr matches only 7. If the input is
iinnttee ggeerr , both rules match 7 characters, and the keyword
rule is selected because it was given first. Anything
shorter (e.g.iinntt) will not match the expressioniinnttee ggeerr
and so the identifier interpretation is used.

-- --

LEX−6

The principle of preferring the longest match makes
rules containing expressions like..∗∗ dangerous. For
example,

′.∗′
might seem a good way of recognizing a string in sin-
gle quotes. But it is an invitation for the program to
read far ahead, looking for a distant single quote. Pre-
sented with the input

′first′ quoted string here,′second′ here
the above expression will match

′first′ quoted string here,′second′
which is probably not what was wanted. A better rule
is of the form

′[ˆ′\n]∗′
which, on the above input, will stop after′′fifirr sstt′′ . The
consequences of errors like this are mitigated by the
fact that the.. operator will not match newline. Thus
expressions like..∗∗ stop on the current line. Don’t try
to defeat this with expressions like[[..\\nn]]++ or equiv-
alents; the Lex generated program will try to read the
entire input file, causing internal buffer overflows.
Note that Lex is normally partitioning the input
stream, not searching for all possible matches of each
expression. This means that each character is
accounted for once and only once. For example, sup-
pose it is desired to count occurrences of bothsshhee and
hhee in an input text. Some Lex rules to do this might be

she s++;
he h++;
\n |
. ;

where the last two rules ignore everything besideshhee
and sshhee. Remember that . does not include newline.
Sincesshhee includeshhee, Lex will normally nnoott recognize
the instances ofhhee included insshhee, since once it has
passed asshhee those characters are gone.
Sometimes the user would like to override this choice.
The action REJECT means ‘‘go do the next alterna-
tive.’’ It causes whatever rule was second choice after
the current rule to be executed. The position of the
input pointer is adjusted accordingly. Suppose the user
really wants to count the included instances ofhhee:

she {s++; REJECT;}
he {h++; REJECT;}
\n |
. ;

these rules are one way of changing the previous exam-
ple to do just that. After counting each expression, it is
rejected; whenever appropriate, the other expression
will then be counted. In this example, of course, the
user could note thatsshhee includeshhee but not vice versa,
and omit the REJECT action onhhee; in other cases,
however, it would not be possible a priori to tell which
input characters were in both classes.
Consider the two rules

a[bc]+ { ... ; REJECT;}
a[cd]+ { ... ; REJECT;}

If the input isaabb , only the first rule matches, and onaadd
only the second matches. The input stringaaccccbb

matches the first rule for four characters and then the
second rule for three characters. In contrast, the input
aaccccdd agrees with the second rule for four characters
and then the first rule for three.
In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances
of these items may overlap or include each other. Sup-
pose a digram table of the input is desired; normally the
digrams overlap, that is the wordtthhee is considered to
contain bothtthh andhhee. Assuming a two-dimensional
array namedddiiggrr aamm to be incremented, the appropriate
source is
%%
[a−z][a−z] {digram[yytext[0]][yytext[1]]++; REJECT;}
\n ;
where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

6. Lex Source Definitions.
Remember the format of the Lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go
either in the definitions section or in the rules section.
Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the
generated program. There are three classes of such
things.
1)Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the Lex
generated program. Such source input prior to the first
%% delimiter will be external to any function in the
code; if it appears immediately after the first %%, it
appears in an appropriate place for declarations in the
function written by Lex which contains the actions.
This material must look like program fragments, and
should precede the first Lex rule.
As a side effect of the above, lines which begin with a
blank or tab, and which contain a comment, are passed
through to the generated program. This can be used to
include comments in either the Lex source or the gen-
erated code. The comments should follow the host
language convention.
2)Anything included between lines containing only%%{{
and%%}} is copied out as above. The delimiters are dis-
carded. This format permits entering text like prepro-
cessor statements that must begin in column 1, or
copying lines that do not look like programs.
3)Anything after the third %% delimiter, reg ardless of
formats, etc., is copied out after the Lex output.
Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained

-- --

LEX−7

between %{ and %}, and begining in column 1, is
assumed to define Lex substitution strings. The format
of such lines is

name translation
and it causes the string given as a translation to be asso-
ciated with the name. The name and translation must
be separated by at least one blank or tab, and the name
must begin with a letter. The translation can then be
called out by the {name} syntax in a rule. Using {D}
for the digits and {E} for an exponent field, for exam-
ple, might abbreviate rules to recognize numbers:

D [0−9]
E [DEde][−+]?{D}+
%%
{D}+ printf("integer");
{D}+"."{D} ∗({E})? |
{D} ∗"."{D}+({E})? |
{D}+{E}

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field,
but the first requires at least one digit before the deci-
mal point and the second requires at least one digit after
the decimal point. To correctly handle the problem
posed by a Fortran expression such as3355..EEQQ..II , which
does not contain a real number, a context-sensitive rule
such as

[0−9]+/"."EQ printf("integer");
could be used in addition to the normal rule for inte-
gers.
The definitions section may also contain other com-
mands, including the selection of a host language, a
character set table, a list of start conditions, or adjust-
ments to the default size of arrays within Lex itself for
larger source programs. These possibilities are dis-
cussed below under ‘‘Summary of Source Format,’’
section 12.

7. Usage.
There are two steps in compiling a Lex source pro-
gram. First, the Lex source must be turned into a gen-
erated program in the host general purpose language.
Then this program must be compiled and loaded, usu-
ally with a library of Lex subroutines. The generated
program is on a file namedllee xx..yyyy ..cc . The I/O library is
defined in terms of the C standard library [6].
The C programs generated by Lex are slightly different
on OS/370, because the OS compiler is less powerful
than the UNIX or GCOS compilers, and does less at
compile time. C programs generated on GCOS and
UNIX are the same.
UUNNIIXX.. The library is accessed by the loader flag−−llll .
So an appropriate set of commands is

lex source cc lex.yy.c −ll
The resulting program is placed on the usual fileaa..oouutt
for later execution. To use Lex with Yacc see below.
Although the default Lex I/O routines use the C stan-
dard library, the Lex automata themselves do not do so;
if private versions ofiinnppuutt,, oouuttppuutt anduunnppuutt are given,
the library can be avoided.

8. Lex and Yacc.
If you want to use Lex with Yacc, note that what Lex
writes is a program namedyyyyllee xx(()),, the name required
by Yacc for its analyzer. Normally, the default main
program on the Lex library calls this routine, but if
Yacc is loaded, and its main program is used, Yacc will
call yyyyllee xx(()).. In this case each Lex rule should end with

return(token);
where the appropriate token value is returned. An easy
way to get access to Yacc’s names for tokens is to com-
pile the Lex output file as part of the Yacc output file by
placing the line

include "lex.yy.c"
in the last section of Yacc input. Supposing the gram-
mar to be named ‘‘good’’ and the lexical rules to be
named ‘‘better’’ the UNIX command sequence can just
be:

yacc good
lex better
cc y.tab.c −ly −ll

The Yacc library (−ly) should be loaded before the Lex
library, to obtain a main program which invokes the
Yacc parser. The generations of Lex and Yacc pro-
grams can be done in either order.

9. Examples.
As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

%%
int k;

[0−9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);
}

to do just that. The rule [0−9]+ recognizes strings of
digits; aattooii converts the digits to binary and stores the
result in kk.. The operator % (remainder) is used to
check whetherkk is divisible by 7; if it is, it is incre-
mented by 3 as it is written out. It may be objected that
this program will alter such input items as4499..6633 or XX77 .
Furthermore, it increments the absolute value of all
negative numbers divisible by 7. To avoid this, just add
a few more rules after the active one, as here:
%%

int k;
−?[0−9]+ {

k = atoi(yytext);
printf("%d", k%7 == 0 ? k+3 : k);
}

−?[0−9.]+ ECHO;
[A-Za-z][A-Za-z0-9]+ ECHO;
Numerical strings containing a ‘‘.’’ or preceded by a let-
ter will be picked up by one of the last two rules, and
not changed. Theiiff−−eellssee has been replaced by a C
conditional expression to save space; the formaa??bb::cc

-- --

LEX−8

means ‘‘ifaa thenbb elsecc ’’.
For an example of statistics gathering, here is a pro-
gram which histograms the lengths of words, where a
word is defined as a string of letters.

int lengs[100];
%%
[a−z]+ lengs[yyleng]++;
. |
\n ;
%%
yywrap()
{
int i;
printf("Length No. words\n");
for(i=0; i<100; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return(1);
}

This program accumulates the histogram, while pro-
ducing no output. At the end of the input it prints the
table. The final statementrr eettuurrnn((11));; indicates that Lex
is to perform wrapup. Ifyyyywwrr aapp returns zero (false) it
implies that further input is available and the program
is to continue reading and processing. To provide a
yyyywwrr aapp that never returns true causes an infinite loop.
As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision
Fortran to single precision Fortran. Because Fortran
does not distinguish upper and lower case letters, this
routine begins by defining a set of classes including
both cases of each letter:

a [aA]
b [bB]
c [cC]
...
z [zZ]

An additional class recognizes white space:
W [\t]∗

The first rule changes ‘‘double precision’’ to ‘‘real’’, or
‘‘DOUBLE PRECISION’’ to ‘‘REAL’’.
{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n} {

printf(yytext[0]==′d′? "real" : "REAL");
}

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The con-
ditional operator is used to select the proper form of the
keyword. The next rule copies continuation card indi-
cations to avoid confusing them with constants:

ˆ" "[ˆ 0] ECHO;
In the regular expression, the quotes surround the
blanks. It is interpreted as ‘‘beginning of line, then five
blanks, then anything but blank or zero.’’ Note the two
different meanings of̂̂ . There follow some rules to
change double precision constants to ordinary floating
constants.

[0−9]+{W}{d}{W}[+−]?{W}[0−9]+ |
[0−9]+{W}"."{W}{d}{W}[+−]?{W}[0−9]+ |

"."{W}[0−9]+{W}{d}{W}[+−]?{W}[0−9]+ {
/∗ convert constants∗/
for(p=yytext;∗p != 0; p++)

{
if (∗p == ′d′ ||∗p == ′D′)

∗p=+ ′e′− ′d′;
ECHO;
}

After the floating point constant is recognized, it is
scanned by theffoorr loop to find the letterdd or DD . The
program than adds′′ee′′−− ′′dd′′ , which converts it to the next
letter of the alphabet. The modified constant, now sin-
gle-precision, is written out again. There follow a
series of names which must be respelled to remove
their initial dd. By using the arrayyyyyttee xxtt the same action
suffices for all the names (only a sample of a rather
long list is given here).

{d}{s}{i}{n} |
{d}{c}{o}{s} |
{d}{s}{q}{r}{t} |
{d}{a}{t}{a}{n} |
...
{d}{f}{l}{o}{a}{t} printf("%s",yytext+1);

Another list of names must have initialdd changed to
initial aa:

{d}{l}{o}{g} |
{d}{l}{o}{g}10 |
{d}{m}{i}{n}1 |
{d}{m}{a}{x}1 {

yytext[0] =+ ′a′ − ′d′;
ECHO;
}

And one routine must have initialdd changed to initialrr:
{d}1{m}{a}{c}{h} {yytext[0] =+ ′r′ − ′d′;

To avoid such names asddssiinnxx being detected as
instances ofddssiinn, some final rules pick up longer words
as identifiers and copy some surviving characters:

[A−Za−z][A−Za−z0−9]∗ |
[0−9]+ |
\n |
. ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.
10. Left Context Sensitivity.
Sometimes it is desirable to have sev eral sets of lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish
preprocessor statements and analyze them differently
from ordinary statements. This requires sensitivity to
prior context, and there are several ways of handling
such problems. Thê̂operator, for example, is a prior
context operator, recognizing immediately preceding
left context just as$$ recognizes immediately following
right context. Adjacent left context could be extended,
to produce a facility similar to that for adjacent right
context, but it is unlikely to be as useful, since often the

-- --

LEX−9

relevant left context appeared some time earlier, such as
at the beginning of a line.
This section describes three means of dealing with dif-
ferent environments: a simple use of flags, when only a
few rules change from one environment to another, the
use ofssttaarrtt ccoonnddiittiioonnss on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input
text is analyzed, and set some parameter to reflect the
change. This may be a flag explicitly tested by the
user’s action code; such a flag is the simplest way of
dealing with the problem, since Lex is not involved at
all. It may be more convenient, however, to hav e Lex
remember the flags as initial conditions on the rules.
Any rule may be associated with a start condition. It
will only be recognized when Lex is in that start condi-
tion. The current start condition may be changed at any
time. Finally, if the sets of rules for the different envi-
ronments are very dissimilar, clarity may be best
achieved by writing several distinct lexical analyzers,
and switching from one to another as desired.
Consider the following problem: copy the input to the
output, changing the wordmmaa ggiicc to fifirr sstt on every line
which began with the letteraa, changingmmaa ggiicc to sseecc--
oonndd on every line which began with the letterbb, and
changingmmaa ggiicc to tthhiirr dd on every line which began with
the lettercc. All other words and all other lines are left
unchanged.
These rules are so simple that the easiest way to do
this job is with a flag:

int flag;
%%
ˆa {flag = ′a′; ECHO;}
ˆb {flag = ′b′; ECHO;}
ˆc {flag = ′c′; ECHO;}
\n {flag = 0 ; ECHO;}
magic {

switch (flag)
{
case′a′: printf("first"); break;
case′b′: printf("second"); break;
case′c′: printf("third"); break;
default: ECHO; break;
}
}

should be adequate.
To handle the same problem with start conditions, each
start condition must be introduced to Lex in the defini-
tions section with a line reading

%Start name1 name2 ...
where the conditions may be named in any order. The
word SSttaarrtt may be abbreviated toss or SS. The condi-
tions may be referenced at the head of a rule with the
<> brackets:

<name1>expression
is a rule which is only recognized when Lex is in the
start condition nnaammee11. To enter a start condition,
execute the action statement

BEGIN name1;
which changes the start condition tonnaammee11. To resume
the normal state,

BEGIN 0;
resets the initial condition of the Lex automaton inter-
preter. A rule may be active in sev eral start conditions:

<name1,name2,name3>
is a legal prefix. Any rule not beginning with the <>
prefix operator is always active.
The same example as before can be written:

%START AA BB CC
%%
ˆa {ECHO; BEGIN AA;}
ˆb {ECHO; BEGIN BB;}
ˆc {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user’s code.

11. Character Set.
The programs generated by Lex handle character I/O
only through the routinesiinnppuutt,, oouuttppuutt,, and uunnppuutt..
Thus the character representation provided in these rou-
tines is accepted by Lex and employed to return values
in yyyyttee xxtt.. For internal use a character is represented as
a small integer which, if the standard library is used,
has a value equal to the integer value of the bit pattern
representing the character on the host computer. Nor-
mally, the letteraa is represented as the same form as
the character constant′′aa′′ . If this interpretation is
changed, by providing I/O routines which translate the
characters, Lex must be told about it, by giving a trans-
lation table. This table must be in the definitions sec-
tion, and must be bracketed by lines containing only
‘‘%T’’. The table contains lines of the form

{integer} {character string}
which indicate the value associated with each character.
Thus the next example

%T
1 Aa
2 Bb
...
26 Zz
27 \n
28 +
29 −
30 0
31 1
...
39 9
%T

Sample character table.
maps the lower and upper case letters together into the
integers 1 through 26, newline into 27, + and − into 28

-- --

LEX−10

and 29, and the digits into 30 through 39. Note the
escape for newline. If a table is supplied, every charac-
ter that is to appear either in the rules or in any valid
input must be included in the table. No character may
be assigned the number 0, and no character may be
assigned a bigger number than the size of the hardware
character set.

12. Summary of Source Format.
The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of
1)Definitions, in the form ‘‘name space translation’’.
2)Included code, in the form ‘‘space code’’.
3)Included code, in the form

%{
code
%}

4)Start conditions, given in the form
%S name1 name2 ...

5)Character set tables, in the form
%T
number space character-string
...
%T

6)Changes to internal array sizes, in the form
%xx nnnnnn

wherennnnnn is a decimal integer representing an array
size andxx selects the parameter as follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form ‘‘expression
action’’ where the action may be continued on succeed-
ing lines by using braces to delimit it.
Regular expressions in Lex use the following opera-
tors:
x the character "x"
"x" an "x", even if x is an operator.
\x an "x", even if x is an operator.
[xy] the character x or y.
[x−z] the characters x, y or z.
[ˆx] any character but x.
. any character but newline.
ˆx an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
x∗ 0,1,2, ... instances of x.
x+ 1,2,3, ... instances of x.

x|y an x or a y.
(x) an x.
x/y an x but only if followed by y.
{xx} the translation of xx from the definitions section.
x{m,n} mm throughnn occurrences of x

13. Caveats and Bugs.
There are pathological expressions which produce
exponential growth of the tables when converted to
deterministic machines; fortunately, they are rare.
REJECT does not rescan the input; instead it remem-
bers the results of the previous scan. This means that if
a rule with trailing context is found, and REJECT
executed, the user must not have useduunnppuutt to change
the characters forthcoming from the input stream. This
is the only restriction on the user’s ability to manipulate
the not-yet-processed input.
14. Acknowledgments.
As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho’s string
matching routines. Therefore, both S. C. Johnson and
A. V. Aho are really originators of much of Lex, as well
as debuggers of it. Many thanks are due to both.
The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15. References.
1.B. W. Kernighan and D. M. Ritchie,TThhee CC PPrrooggrraamm--
mmiinngg LLaanngguuaaggee,,Prentice-Hall, N. J. (1978).
2.B. W. Kernighan,RRaattffoorr:: AA PPrreepprroocceessssoorr ffoorr aa RRaattiioo--
nnaall FFoorrttrraann,, Software − Practice and Experience,5,
pp. 395-496 (1975).
3.S. C. Johnson,YY aacccc:: YYeett AAnnootthheerr CCoommppiilleerr CCoommppiilleerr,,
Computing Science Technical Report No. 32, 1975,
Bell Laboratories, Murray Hill, NJ 07974.
4.A. V. Aho and M. J. Corasick,EEff fificciieenntt SSttrriinngg MMaattcchh--
iinngg:: AAnn AAiidd ttoo BBiibblliiooggrraapphhiicc SSeeaarrcchh,, Comm. ACM18,
333-340 (1975).
5.B. W. Kernighan, D. M. Ritchie and K. L. Thompson,
QQEEDD TTeexxtt EEddiittoorr,, Computing Science Technical Report
No. 5, 1972, Bell Laboratories, Murray Hill, NJ 07974.
6.D. M. Ritchie, private communication. See also M.
E. Lesk,TThhee PPoorrttaabbllee CC LLiibbrraarryy,, Computing Science
Technical Report No. 31, Bell Laboratories, Murray
Hill, NJ 07974.

