
Bell Laboratories

Subject:Case--- File- date: November 2, 1997

from:

Normally, the order of items does not matter. The only exception is that if there are multiple authors (%A
lines) the order of authors should be that on the paper. If a line is too long, it may be continued on to the
next line; any line not beginning with % or . (dot) is assumed to be a continuation of the previous line.
Again, see the first article above for an example of a long title. Except for authors, do not repeat any items;
if two %J lines are given, for example, the first is ignored. Multiple items on the same file should be sepa-
rated by blank lines.
Note that in formatted printouts of the file, the exact appearance of the items is determined by a set of
macros and the formatting programs. Do not try to adjust fonts, punctuation, etc. by editing the data base;
it is wasted effort. In case someone has a real need for a differently-formatted output, a new set of macros
can easily be generated to provide alternative appearances of the citations.

1. Updating and Re-indexing.
This section describes the commands that are used to manipulate and change the data base. It explains the
procedures for (a) finding references in the data base, (b) adding new references, (c) changing existing ref-
erences, and (d) deleting references. Remember that all changes, additions, and deletions are done by
preparing separate files and then running an ‘update and reindex’ step.
Checking what’s there now.Often you will want to know what is currently in the data base. There is a
special commandlookbib to look for things and print them out. It searches for articles based on words in
the title, or the author’s name, or the date. For example, you could find the first paper above with

lookbib aho ullman maximal subsequence 1976
Letter Meaning Letter Meaning

A Author K Extra keys
B Book including item N Issue number
C City of publication O Other
D Date P Page numbers
E Editor of book R Report number
I Publisher (issuer) T Title of item
J Journal name V Volume number

Note that
%B
is used to indicate the title
of a book containing the article being entered;
when an item is an entire book, the title should
be entered with a
%T
as usual.

or

lookbib aho ullman hirschberg

If you don’t giv e enough words, several items will be found; if you spell some wrong, nothing will be
found. There are around 4300 papers in the public file; you should always use this command to check
when you are not sure whether a certain paper is there or not.
Additions. To add new papers, just type in, on one or more files, the citations for the new papers. Remem-
ber to check first if the papers are already in the data base. For example, if a paper has a previous memo
version, this should be treated as a change to an existing entry, rather than a new entry. If sev eral new pa-
pers are being typed on the same file, be sure that there is a blank line between each two papers.
Changes.To change an item, it should be extracted onto a file. This is done with the command

pub.chg key1 key2 key3 ...

where the items key1, key2, key3, etc. are a set of keys that will find the paper, as in thelookbib command.

-- --

- 2 -

That is, if

lookbib johnson yacc cstr

will find a item (to, in this case, Computing Science Technical Report No. 32, ‘‘YACC: Yet Another Com-
piler-Compiler,’’ by S. C. Johnson) then

pub.chg johnson yacc cstr

will permit you to edit the item. Thepub.chg command extracts the item onto a file named ‘‘bibxxx’’
where ‘‘xxx’’ is a 3-digit number, e.g. ‘‘bib234’’. The command will print the file name it has chosen. If
the set of keys finds more than one paper (or no papers) an error message is printed and no file is written.
Each reference to be changed must be extracted with a separatepub.chgcommand, and each will be placed
on a separate file. You should then edit the ‘‘bibxxx’’ file as desired to change the item, using the UNIX
editor. Do not delete or change the first line of the file, however, which begins%# and is a special code
line to tell the update program which item is being altered. You may delete or change other lines, or add
lines, as you wish. The changes are not actually made in the public data base until you run the update com-
mandpub.run (see below). Thus, if after extracting an item and modifying it, you decide that you’d rather
leave things as they were, delete the ‘‘bibxxx’’ file, and your change request will disappear.
Deletions.To delete an entry from the data base, type the command

pub.del key1 key2 key3 ...

where the items key1, key2, etc. are a set of keys that will find the paper, as with thelookbib command.
That is, if

lookbib aho hirschberg ullman

will find a paper,

pub.del aho hirschberg ullman

deletes it. Upper and lower case are equivalent in keys; the command

pub.del Aho Hirschberg Ullman

is an equivalentpub.del command. Thepub.del command will print the entry being deleted. It also gives
the name of a ‘‘bibxxx’’ file on which the deletion command is stored. The actual deletion is not done until
the changes, additions, etc. are processed, as with thepub.chg command. If, after seeing the item to be
deleted, you change your mind about throwing it away, delete the ‘‘bibxxx’’ file and the delete request dis-
appears. Again, if the list of keys does not uniquely identify one paper, an error message is given.
Remember that the default versions of the commands described here edit a public data base. Do not delete
items unless you are sure deletion is proper; usually this means that there are duplicate entries for the same
paper. Otherwise, view requests for deletion with skepticism; even if one person has no need for a particu-
lar item in the data base, someone else may want it there.
If an item is correct, but should not appear in the ‘‘List of Publications’’ as normally produced, add the line

%K DNL

to the item. This preserves the item intact, but implies ‘‘Do Not List’’ to the to the commands that print
publication lists. The DNL line is normally used for some technical reports, minor memoranda, or other
low-grade publications.
Update and reindex.When you have completed a session of changes, you should type the command

pub.run file1 file2 ...

where the names ‘‘file1’’, ... are the new files of additions you have prepared. You need not list the
‘‘bibxxx’’ files representing changes and deletions; they are processed automatically. All of the new items
are edited into the standard public data base, and then a new index is made. This process takes about one
minute of processor time. The index is not made by re-analyzing and re-sorting the entire data base; the
new or changed items are indexed in the usual way and then merged with the previous data files. A com-
plete re-index would be much slower for small changes.

-- --

- 3 -

Normally, you should executepub.run just before you logoff after performing some edit requests. Howev-
er, if you don’t, the various change request files remain in your directory until you finally do execute
pub.run. When the changes are processed, the ‘‘bibxxx’’ files are deleted. It is not desirable to wait too
long before processing changes, however, to avoid conflicts with someone else who wishes to change the
same file. If executingpub.run produces the message ‘‘File bibxxx too old’’ it means that someone else
has been editing the same file between the time you prepared your changes, and the time you typed
pub.run.You must delete such old change files and re-enter them.
Note that althoughpub.run discards the ‘‘bibxxx’’ files after processing them, your files of additions are
left around even afterpub.run is finished. If they were typed in only for purposes of updating the data
base, you may delete them after they hav e been processed bypub.run.
Example.Suppose, for example, that you wish to
(1)Add to the data base the memos ‘‘The Dilogarithm Function of a Real Argument’’ by R. Morris, and
‘‘UNIX Software Distribution by Communication Link,’’ by M. E. Lesk and A. S. Cohen;
(2)Delete from the data base the item ‘‘Cheap Typesetters’’, by M. E. Lesk, SIGLASH Newsletter, 1973;
and
(3)Change ‘‘J. Assoc. Comp. Mach.’’ to ‘‘Jour. ACM’’ in the citation for Aho, Hirschberg, and Ullman
shown above.
The procedure would be as follows. First, you would make a file containing the additions, here called
‘‘new.1’’, in the normal way using the UNIX editor. In the script shown below, the computer prompts are in
italics.

$ ed new.1
?
a
%T The Dilogarithm Function of a Real Argument
%A Robert Morris
%M TM 78-1271-1
%D 1978

%T UNIX Software Distribution by Communication Link
%A M. E. Lesk
%A A. S. Cohen
%M TM 78-1274-1, 78-8234-1
%D 1978
w new.1
199
q

Next you would specify the deletion, which would be done with thepub.delcommand:

$ pub.del lesk cheap typesetters siglash
to which the computer responds:

Will delete: (file bib176)

%T Cheap Typesetters
%A M. E. Lesk
%J ACM SIGLASH Newsletter
%V 6
%N 4
%P 14-16
%D October 1973

And then you would extract the Aho, Hirschberg and Ullman paper. The dialogue involved is shown below.
First runpub.chg to extract the paper; it responds by printing the citation and informing you that it was
placed on filebib123. That file is then edited.

-- --

- 4 -

$ pub.chg aho hirschberg ullman
Extracting as file bib123
%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
%V 23
%N 1
%P 1-12
%M TM 75-1271-7
%D Jan. 1976

$ ed bib123
312
/Assoc/s/ J/ Jour/p
%J Jour. Assoc. Comp. Mach.
s/Assoc.*/ACM/p
%J Jour. ACM
1,$p
%# /usr/dict/papers/p76 233 245 change
%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J Jour. ACM
%V 23
%N 1
%P 1-12
%M TM 75-1271-7
%D Jan. 1976

w
292
q
$

Finally, executepub.run, making sure to remember that you have prepared a new file ‘‘new.1’’:

$ pub.run new.1

Currently, this takes about 1 minute of 11/70 processor time.

2. Printing a Publication List
There are two commands for printing a publication list, depending on whether you want to print one per-
son’s list, or the list of many people. To print a list for one person, use thepub.indiv command:

pub.indiv M Lesk

This runs off the list for M. Lesk and puts it in file ‘‘output’’. Note that no ‘.’ is giv en after the initial. In
case of ambiguity two initials can be used. Similarly, to get the list for group of people, say

pub.org xxx

which prints all the publications of the members of organizationxxx, taking the names for the list in the file
/usr/dict/papers/centlist/xxx. This command should normally be run in the background; it takes perhaps 15

-- --

- 5 -

minutes. Two options are available with these commands:

pub.indiv −p M Lesk

prints only the papers, leaving out unpublished notes, patents, etc. Also

pub.indiv −t M Lesk | gcat

prints a typeset copy, instead of a computer printer copy. In this case it has been directed to an alternate
typesetter with the ‘gcat’ command. These options may be used together, and may be used with the
pub.org command as well. For example, to print only the papers for all of organization zzz and typeset
them, you could type

pub.center −t −p zzz | gcat &

These publication lists are printed double column with a citation style taken from a set of publication list
macros; the macros, of course, can be changed easily to adjust the format of the lists.

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

I. Some Applications of Inverted Indexes − Overview
This memorandum describes a set of programs which make inv erted indexes to UNIX*
text files, and their application to retrieving and formatting citations for documents pre-
pared usingtroff.
These indexing and searching programs make keyword indexes to volumes of material
too large for linear searching. Searches for combinations of single words can be per-
formed quickly. The programs are divided into two phases. The first makes an index
from the original data; the second searches the index and retrieves items. Both of these
phases are further divided into two parts to separate the data-dependent and algorithm de-
pendent code.
The major current application of these programs is thetroff preprocessorrefer. A list of
4300 references is maintained on line, containing primarily papers written and cited by
local authors. Whenever one of these references is required in a paper, a few words from
the title or author list will retrieve it, and the user need not bother to re-enter the exact ci-
tation. Alternatively, authors can use their own lists of papers.
This memorandum is of interest to those who are interested in facilities for searching
large but relatively unchanging text files on the UNIX system, and those who are interest-
ed in handling bibliographic citations with UNIXtroff.
II. Updating Publication Lists
This section is a brief note describing the auxiliary programs for managing the updating
processing. It is written to aid clerical users in maintaining lists of references. Primarily,
the programs described permit a large amount of individual control over the content of
publication lists while retaining the usefulness of the files to other users.
III. Manual Pages
This section contains the pages from the UNIX programmer’s manual for thelookall,
pubindex,andrefer commands. It is useful for reference.

* UNIX is a Trademark of Bell Laboratories.

-- --

These lines are the only input used to make the index. The first field (the file name, byte position, and byte
count) is the tag of the item and can be used to retrieve it quickly. Normally, an item is either a whole file
or a section of a file delimited by blank lines. After the tab, the second field contains the keys. The keys, if
selected by the automatic program, are any alphanumeric strings which are not among the 100 most fre-
quent words in English and which are not entirely numeric (except for four-digit numbers beginning 19,
which are accepted as dates). Ke ys are truncated to six characters and converted to lower case. Some se-
lection is needed if the original items are very large. We normally just take the firstn keys, withn less
than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a complete En-
glish dictionary; it would presumably be retrieved for all queries.
To generate an inverted index to the list of record tags and keys, the keys are hashed and sorted to produce
an index. What is wanted, ideally, is a series of lists showing the tags associated with each key. To con-
dense this, what is actually produced is a list showing the tags associated with each hash code, and thus
with some set of keys. To speed up access and further save space, a set of three or possibly four files is pro-
duced. These files are:

File Contents
eennttrryy Pointers to posting file

for each hash code
ppoossttiinngg Lists of tag pointers for

each hash code
ttaa gg Tags for each item
kk eeyy Ke ys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under each hash
code. To speed up searching, the entry file is an array of pointers into the posting file, one per potential
hash code. Furthermore, the items in the lists in the posting file are not referred to by their complete tag,
but just by an address in the tag file, which gives the complete tags. The key file is optional and contains a
copy of the keys used in the indexing.
The searching process starts with a query, containing several keys. The goal is to obtain all items which
were indexed under these keys. The query keys are hashed, and the pointers in the entry file used to access
the lists in the posting file. These lists are addresses in the tag file of documents posted under the hash
codes derived from the query. The common items from all lists are determined; this must include the items
indexed by every key, but may also contain some items which are false drops, since items referenced by the
correct hash codes need not actually have contained the correct keys. Normally, if there are several keys in
the query, there are not likely to be many false drops in the final combined list even though each hash code
is somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against the possi-
bility that an item has false-dropped on some hash code in the query, the original items are normally ob-
tained from the delivery program (4) and the query keys checked against them by string comparison.
Usually, therefore, the check for bad drops is made against the original file. However, if the key derivation
procedure is complex, it may be preferable to check against the keys fed to program (2). In this case the
optional key file which contains the keys associated with each item is generated, and the item tag is supple-
mented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for each item.
This file is not usually necessary with the present key-selection program, since the keys always appear in
the original document.
There is also an option (-Cn) for coordination level searching. This retrieves items which match all butn
of the query keys. The items are retrieved in the order of the number of keys that they match. Of course,n
must be less than the number of query keys (nothing is retrieved unless it matches at least one key).
As an example, consider one set of 4377 references, comprising 660,000 bytes. This included 51,000
keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the expense of time);
995 of 997 possible hash codes were used. The total set of index files (no key file) included 171,000 bytes,
about 26% of the original file size. It took 8 minutes of processor time to hash, sort, and write the index.

-- --

- 2 -

To search for a single query with the resulting index took 1.9 seconds of processor time, while to find the
same paper with a sequential linear search usinggrep (reading all of the tags and keys) took 12.3 seconds
of processor time.
We hav e also used this software to index all of the English stored on ourUNIX system. This is the index
searched by thelookall command. On a typical day there were 29,000 files in our user file system, contain-
ing about 152,000,000 bytes. Of these 5,300 files, containing 32,000,000 bytes (about 21%) were English
text. The total number of ‘words’ (determined mechanically) was 5,100,000. Of these 227,000 were se-
lected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible) different hash codes. The result-
ing inverted file indexes used 845,000 bytes, or about 2.6% of the size of the original files. The particularly
small indexes are caused by the fact that keys are taken from only the first 50 non-common words of some
very long input files.
Even this largelookall index can be searched quickly. For example, to find this document by looking for
the keys ‘‘lesk inverted indexes’’ required 1.7 seconds of processor time and system time. By comparison,
just to search the 800,000 byte dictionary (smaller than even the inverted indexes, let alone the 32,000,000
bytes of text files) withgrep takes 29 seconds of processor time. Thelookall program is thus useful when
looking for a document which you believe is stored on-line, but do not know where. For example, many
memos from the Computing Science Research Center are in itsUNIX file system, but it is often difficult to
guess where a particular memo might be (it might have sev eral authors, each with many directories, and
have been worked on by a secretary with yet more directories). Instructions for the use of thelookall com-
mand are given in the manual section, shown in the appendix to this memorandum.
The only indexes maintained routinely are those of publication lists and all English files. To make other
indexes, the programs for making keys, sorting them, searching the indexes, and delivering answers must be
used. Since they are usually invoked as parts of higher-level commands, they are not in the default com-
mand directory, but are available to any user in the directory/usr/lib/refer. Three programs are of interest:
mkey, which isolates keys from input files;inv , which makes an index from a set of keys; andhunt, which
searches the index and delivers the items. Note that the two parts of the retrieval phase are combined into
one program, to avoid the excessive system work and delay which would result from running these as sepa-
rate processes.
These three commands have a large number of options to adapt to different kinds of input. The user not in-
terested in the detailed description that now follows may skip to section 3, which describes therefer pro-
gram, a packaged-up version of these tools specifically oriented towards formatting references.
Make Keys. The programmkey is the key-making program corresponding to step (1) in phase A. Nor-
mally, it reads its input from the file names given as arguments, and if there are no arguments it reads from
the standard input. It assumes that blank lines in the input delimit separate items, for each of which a dif-
ferent line of keys should be generated. The lines of keys are written on the standard output. Ke ys are any
alphanumeric string in the input not among the most frequent words in English and not entirely numeric
(except that all-numeric strings are acceptable if they are between 1900 and 1999). In the output, keys are
translated to lower case, and truncated to six characters in length; any associated punctuation is removed.
The following flag arguments are recognized bymkey:

−c name Name of file of common words; default is/usr/lib/eign.
−f name Read a list of files fromnameand take each as an input argument.
−i chars Ignore all lines which begin with ‘%’ followed by any character in

chars.
−kn Use at mostn keys per input item.
−ln Ignore items shorter thann letters long.
−nm Ignore as a key any word in the firstm words of the list of common En-

glish words. The default is 100.
−s Remove the labels(file:start,length)from the output; just give the keys.

Used when searching rather than indexing.
−w Each whole file is a separate item; blank lines in files are irrelevant.

The normal arguments for indexing references are the defaults, which are−c /usr/lib/eign, −n100, and
−l3 . For searching, the−s option is also needed. When the biglookall index of all English files is run,
the options are−w , −k50 , and−f (filelist) . When running on textual input, themkey program processes

-- --

- 3 -

about 1000 English words per processor second. Unless the−k option is used (and the input files are long
enough for it to take effect) the output ofmkey is comparable in size to its input.
Hash and invert. The inv program computes the hash codes and writes the inverted files. It reads the out-
put of mkey and writes the set of files described earlier in this section. It expects one argument, which is
used as the base name for the three (or four) files to be written. Assuming an argument ofIndex (the de-
fault) the entry file is namedIndex.ia, the posting fileIndex.ib, the tag fileIndex.ic, and the key file (if pre-
sent)Index.id. Theinv program recognizes the following options:

−a Append the new keys to a previous set of inverted files, making new
files if there is no old set using the same base name.

−d Write the optional key file. This is needed when you can not check for
false drops by looking for the keys in the original inputs, i.e. when the
key derivation procedure is complicated and the output keys are not
words from the input files.

−hn The hash table size isn (default 997);n should be prime. Makingn
bigger saves search time and spends disk space.

−i[u] name Take input from filename, instead of the standard input; ifu is present
name is unlinked when the sort is started. Using this option permits
the sort scratch space to overlap the disk space used for input keys.

−n Make a completely new set of inverted files, ignoring previous files.
−p Pipe into the sort program, rather than writing a temporary input file.

This saves disk space and spends processor time.
−v Verbose mode; print a summary of the number of keys which finished

indexing.

About half the time used ininv is in the contained sort. Assuming the sort is roughly linear, howev er, a
guess at the total timing forinv is 250 keys per second. The space used is usually of more importance: the
entry file uses four bytes per possible hash (note the−h option), and the tag file around 15-20 bytes per
item indexed. Roughly, the posting file contains one item for each key instance and one item for each pos-
sible hash code; the items are two bytes long if the tag file is less than 65336 bytes long, and the items are
four bytes wide if the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should
be over-full; for most of the files indexed in this way, there is no other real choice, since theentry file must
fit in memory.
Searching and Retrieving. The hunt program retrieves items from an index. It combines, as mentioned
above, the two parts of phase (B): search and delivery. The reason why it is efficient to combine delivery
and search is partly to avoid starting unnecessary processes, and partly because the delivery operation must
be a part of the search operation in any case. Because of the hashing, the search part takes place in two
stages: first items are retrieved which have the right hash codes associated with them, and then the actual
items are inspected to determine false drops, i.e. to determine if anything with the right hash codes doesn’t
really have the right keys. Since the original item is retrieved to check on false drops, it is efficient to pre-
sent it immediately, rather than only giving the tag as output and later retrieving the item again. If there
were a separate key file, this argument would not apply, but separate key files are not common.
Input tohunt is taken from the standard input, one query per line. Each query should be inmkey −sout-
put format; all lower case, no punctuation. Thehunt program takes one argument which specifies the base
name of the index files to be searched. Only one set of index files can be searched at a time, although many
text files may be indexed as a group, of course. If one of the text files has been changed since the index,
that file is searched withfgrep; this may occasionally slow down the searching, and care should be taken to
avoid having many out of date files. The following option arguments are recognized byhunt:

−a Give all output; ignore checking for false drops.
−Cn Coordination leveln; retrieve items with not more thann terms of the

input missing; defaultC0, implying that each search term must be in
the output items.

-- --

- 4 -

−F[ynd] ‘‘−Fy’’ giv es the text of all the items found; ‘‘−Fn’’ suppresses them.
‘‘−F d ’’ where d is an integer gives the text of the firstd items. The de-
fault is−Fy.

−g Do not usefgrep to search files changed since the index was made;
print an error comment instead.

−i string Takestring as input, instead of reading the standard input.
−l n The maximum length of internal lists of candidate items isn; default

1000.
−o string Put text output (‘‘−Fy’’) instring; of useonly when invoked from an-

other program.
−p Print hash code frequencies; mostly for use in optimizing hash table

sizes.
−T[ynd] ‘‘−Ty’’ giv es the tags of the items found; ‘‘−Tn’’ suppresses them.

‘‘−T d ’’ where d is an integer gives the firstd tags. The default is−Tn .
−t string Put tag output (‘‘−Ty’’) instring; of useonly when invoked from an-

other program.

The timing ofhunt is complex. Normally the hash table is overfull, so that there will be many false drops
on any single term; but a multi-term query will have few false drops on all terms. Thus if a query is under-
specified (one search term) many potential items will be examined and discarded as false drops, wasting
time. If the query is overspecified (a dozen search terms) many keys will be examined only to verify that
the single item under consideration has that key posted. The variation of search time with number of keys
is shown in the table below. Queries of varying length were constructed to retrieve a particular document
from the file of references. In the sequence to the left, search terms were chosen so as to select the desired
paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so that the query
did not uniquely select the desired document until four keys had been used. The same document was the
target in each case, and the final set of eight keys are also identical; the differences at five, six and seven
keys are produced by measurement error, not by the slightly different key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) (incl. false) Documents (seconds)

1 15 3 1.27 1 68 55 5.96
2 1 1 0.11 2 29 29 2.72
3 1 1 0.14 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18
5 1 1 0.19 5 1 1 0.21
6 1 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer; however,
overspecification is quite cheap. Roughly, the time required byhunt can be approximated as 30 millisec-
onds per search key plus 75 milliseconds per dropped document (whether it is a false drop or a real an-
swer). In general, overspecification can be recommended; it protects the user against additions to the data
base which turn previously uniquely-answered queries into ambiguous queries.
The careful reader will have noted an enormous discrepancy between these times and the earlier quoted
time of around 1.9 seconds for a search. The times here are purely for the search and retrieval: they are
measured by running many searches through a single invocation of thehunt program alone. Usually, the
UNIX command processor (the shell) must start both themkeyandhunt processes for each query, and ar-
range for the output ofmkey to be fed to thehunt program. This adds a fixed overhead of about 1.7 sec-
onds of processor time to any single search. Furthermore, remember that all these times are processor
times: on a typical morning on ourPDP 11/70 system, with about one dozen people logged on, to obtain 1
second of processor time for the search program took between 2 and 12 seconds of real time, with a median
of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a single search may be only
200 milliseconds, after you add the 1.7 seconds of startup processor time and then assume a 4:1

-- --

- 5 -

elapsed/processor time ratio, it will be 8 seconds before any response is printed.

5. Selecting and Formatting References for TROFF

The major application of the retrieval software isrefer, which is atroff preprocessor likeeqn. kernighan
cherry acm 1975 It scans its input looking for items of the form

.[
imprecise citation
.]

where an imprecise citation is merely a string of words found in the relevant bibliographic citation. This is
translated into a properly formatted reference. If the imprecise citation does not correctly identify a single
paper (either selecting no papers or too many) a message is given. The data base of citations searched may
be tailored to each system, and individual users may specify their own citation files. On our system, the de-
fault data base is accumulated from the publication lists of the members of our organization, plus about half
a dozen personal bibliographies that were collected. The present total is about 4300 citations, but this in-
creases steadily. Even now, the data base covers a large fraction of local citations.
For example, the reference for theeqn paper above was specified as

...
preprocessor like
.I eqn.
.[
kernighan cherry acm 1975
.]
It scans its input looking for items
...

This paper was itself printed usingrefer. The above input text was processed byrefer as well astbl and
troff by the command

refer memo-file | tbl | troff −ms

and the reference was automatically translated into a correct citation to the ACM paper on mathematical
typesetting.
The procedure to use to place a reference in a paper usingrefer is as follows. First, use thelookbib com-
mand to check that the paper is in the data base and to find out what keys are necessary to retrieve it. This
is done by typinglookbib and then typing some potential queries until a suitable query is found. For exam-
ple, had one started to find theeqn paper shown above bypresenting the query

$ lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the query given
above isadequate. Overspecifying the query is of course harmless; it is even desirable, since it decreases
the risk that a document added to the publication data base in the future will be retrieved in addition to the
intended document. The extra time taken by even a grossly overspecified query is quite small. A particu-
larly careful reader may have noticed that ‘‘acm’’ does not appear in the printed citation; we have supple-
mented some of the data base items with extra keywords, such as common abbreviations for journals or oth-
er sources, to aid in searching.
If the reference is in the data base, the query that retrieved it can be inserted in the text, between.[and.]
brackets. If it is not in the data base, it can be typed into a private file of references, using the format dis-
cussed in the next section, and then the−p option used to search this private file. Such a command might
read (if the private references are calledmyfile)

refer −p myfile document | tbl | eqn | troff −ms. . .

wheretbl and/oreqn could be omitted if not needed. The use of the−ms macros lesk typing documents

-- --

- 6 -

unix gcos or some other macro package, however, is essential.Refer only generates the data for the refer-
ences; exact formatting is done by some macro package, and if none is supplied the references will not be
printed.
By default, the references are numbered sequentially, and the−ms macros format references as footnotes
at the bottom of the page. This memorandum is an example of that style. Other possibilities are discussed
in section 5 below.

6. Reference Files.
A reference file is a set of bibliographic references usable withrefer. It can be indexed using the software
described in section 2 for fast searching. Whatrefer does is to read the input document stream, looking for
imprecise citation references. It then searches through reference files to find the full citations, and inserts
them into the document. The format of the full citation is arranged to make it convenient for a macro pack-
age, such as the−ms macros, to format the reference for printing. Since the format of the final reference is
determined by the desired style of output, which is determined by the macros used,refer avoids forcing any
kind of reference appearance. All it does is define a set of string registers which contain the basic informa-
tion about the reference; and provide a macro call which is expanded by the macro package to format the
reference. It is the responsibility of the final macro package to see that the reference is actually printed; if
no macros are used, and the output ofrefer fed untranslated totroff, nothing at all will be printed.
The strings defined byrefer are taken directly from the files of references, which are in the following for-
mat. The references should be separated by blank lines. Each reference is a sequence of lines beginning
with % and followed by a key-letter. The remainder of that line, and successive lines until the next line be-
ginning with% , contain the information specified by the key-letter. In general,refer does not interpret the
information, but merely presents it to the macro package for final formatting. A user with a separate macro
package, for example, can add new key-letters or use the existing ones for other purposes without bothering
refer.
The meaning of the key-letters given below, in particular, is that assigned by the−ms macros. Not all in-
formation, obviously, is used with each citation. For example, if a document is both an internal memoran-
dum and a journal article, the macros ignore the memorandum version and cite only the journal article.
Some kinds of information are not used at all in printing the reference; if a user does not like finding refer-
ences by specifying title or author keywords, and prefers to add specific keywords to the citation, a field is
available which is searched but not printed (K).
The key letters currently recognized byrefer and−ms, with the kind of information implied, are:

Ke y Information specified Ke y Information specified
A Author’s name N Issue number
B Title of book containing item O Other information
C City of publication P Page(s) of article
D Date R Technical report reference
E Editor of book containing item T Title
G Government (NTIS) ordering number V Volume number
I Issuer (publisher)
J Journal name
K Keys (for searching) X or
L Label Y or
M Memorandum label Z Information not used byrefer

For example, a sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctr127
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. ACM
%V 23

-- --

- 7 -

%N 1
%P 1-12
%M abcd-78
%D Jan. 1976

Order is irrelevant, except that authors are shown in the order given. The output ofrefer is a stream of
string definitions, one for each of the fields of each reference, as shown below.

.]-

.ds [A authors’ names...

.ds [T title...

.ds [J journal...

...

.] [type-number

The refer program, in general, does not concern itself with the significance of the strings. The different
fields are treated identically byrefer, except that the X, Y and Z fields are ignored (see the−i option of
mkey) in indexing and searching. Allrefer does is select the appropriate citation, based on the keys. The
macro package must arrange the strings so as to produce an appropriately formatted citation. In this pro-
cess, it uses the convention that the ‘T’ field is the title, the ‘J’ field the journal, and so forth.
The refer program does arrange the citation to simplify the macro package’s job, however. The special
macro.]− precedes the string definitions and the special macro.] [follows. These are changed from the in-
put .[and.] so that running the same file throughrefer again is harmless. The.]− macro can be used by
the macro package to initialize. The.] [macro, which should be used to print the reference, is given an ar-
gumenttype-numberto indicate the kind of reference, as follows:

Value Kind of reference
1 Journal article
2 Book
3 Article within book
4 Technical report
5 Bell Labs technical memorandum
0 Other

The type is determined by the presence or absence of particular fields in the citation (a journal article must
have a ‘J’ field, a book must have an ‘I’ field, and so forth). To a small extent, this violates the above rule
that refer does not concern itself with the contents of the citation; however, the classification of the citation
in troff macros would require a relatively expensive and obscure program. Any macro writer may, of
course, preserve consistency by ignoring the argument to the.] [macro.
The reference is flagged in the text with the sequence

* ([.number* (.]

wherenumber is the footnote number. The strings[. and.] should be used by the macro package to for-
mat the reference flag in the text. These strings can be replaced for a particular footnote, as described in
section 5. The footnote number (or other signal) is available to the reference macro.] [as the string register
[F. To simplify dealing with a text reference that occurs at the end of a sentence,refer treats a reference
which follows a period in a special way. The period is removed, and the reference is preceded by a call for
the string<. and followed by a call for the string>. For example, if a reference follows ‘‘end.’’ it will ap-
pear as

end*(<.*([.number*(.]*(> .

wherenumber is the footnote number. The macro package should turn either the string>. or <. into a pe-
riod and delete the other one. This permits the output to have either the form ‘‘end[31].’’ or ‘‘end.31’’ as the
macro package wishes. Note that in one case the period precedes the number and in the other it follows the
number.
In some cases users wish to suspend the searching, and merely use the reference macro formatting. That
is, the user doesn’t want to provide a search key between.[and.] brackets, but merely the reference lines

-- --

- 8 -

for the appropriate document. Alternatively, the user can wish to add a few fields to those in the reference
as in the standard file, or override some fields. Altering or replacing fields, or supplying whole references,
is easily done by inserting lines beginning with% ; any such line is taken as direct input to the reference
processor rather than keys to be searched. Thus

.[
key1 key2 key3...
%Q New format item
%R Override report name
.]

makes the indicates changes to the result of searching for the keys. All of the search keys must be given be-
fore the first% line.
If no search keys are provided, an entire citation can be provided in-line in the text. For example, if the
eqn paper citation were to be inserted in this way, rather than by searching for it in the data base, the input
would read

...
preprocessor like
.I eqn.
.[
%A B. W. Kernighan
%A L. L. Cherry
%T A System for Typesetting Mathematics
%J Comm. ACM
%V 18
%N 3
%P 151-157
%D March 1975
.]
It scans its input looking for items
...

This would produce a citation of the same appearance as that resulting from the file search.
As shown, fields are normally turned intotroff strings. Sometimes users would rather have them defined
as macros, so that othertroff commands can be placed into the data. When this is necessary, simply double
the control character% in the data. Thus the input

.[
%V 23
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
.]

is processed byrefer into

.ds [V 23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974
..

The information after%%M is defined as a macro to be invoked by.[M while the information after%V is
turned into a string to be invoked by\∗([V . At present−ms expects all information as strings.

-- --

- 9 -

7. Collecting References and other Refer Options
Normally, the combination ofrefer and −ms formats output astroff footnotes which are consecutively
numbered and placed at the bottom of the page. However, options exist to place the references at the end;
to arrange references alphabetically by senior author; and to indicate references by strings in the text of the
form [Name1975a] rather than by number. Whenever references are not placed at the bottom of a page
identical references are coalesced.
For example, the−eoption torefer specifies that references are to be collected; in this case they are output
whenever the sequence

.[
$LIST$
.]

is encountered. Thus, to place references at the end of a paper, the user would runrefer with the−e option
and place the above $LIST$ commands after the last line of the text.Refer will then move all the refer-
ences to that point. To aid in formatting the collected references,refer writes the references preceded by
the line

.]<

and followed by the line

.]>

to invoke special macros before and after the references.
Another possible option torefer is the−s option to specify sorting of references. The default, of course, is
to list references in the order presented. The−soption implies the−eoption, and thus requires a

.[
$LIST$
.]

entry to call out the reference list. The−s option may be followed by a string of letters, numbers, and ‘+’
signs indicating how the references are to be sorted. The sort is done using the fields whose key-letters are
in the string as sorting keys; the numbers indicate how many of the fields are to be considered, with ‘+’ tak-
en as a large number. Thus the default is−sAD meaning ‘‘Sort on senior author, then date.’’ To sort on all
authors and then title, specify−sA+T. And to sort on two authors and then the journal, write−sA2J.
Other options torefer change the signal or label inserted in the text for each reference. Normally these are
just sequential numbers, and their exact placement (within brackets, as superscripts, etc.) is determined by
the macro package. The−l option replaces reference numbers by strings composed of the senior author’s
last name, the date, and a disambiguating letter. If a number follows thel as in−l3 only that many letters of
the last name are used in the label string. To abbreviate the date as well the form-lm,n shortens the last
name to the firstm letters and the date to the lastn digits. For example, the option−l3,2 would refer to the
eqn paper (reference 3) by the signalKer75a, since it is the first cited reference by Kernighan in 1975.
A user wishing to specify particular labels for a private bibliography may use the−k option. Specifying
−kx causes the fieldx to be used as a label. The default isL . If this field ends in−, that character is re-
placed by a sequence letter; otherwise the field is used exactly as given.
If none of therefer-produced signals are desired, the−b option entirely suppresses automatic text signals.
If the user wishes to override the−ms treatment of the reference signal (which is normally to enclose the
number in brackets innroff and make it a superscript introff) this can be done easily. If the lines.[or .]
contain anything following these characters, the remainders of these lines are used to surround the reference
signal, instead of the default. Thus, for example, to say ‘‘See reference (2).’’ and avoid ‘‘See reference.2’’
the input might appear

See reference
.[(
imprecise citation ...
.]).

-- --

- 10 -

Note that blanks are significant in this construction. If a permanent change is desired in the style of refer-
ence signals, however, it is probably easier to redefine the strings[. and.] (which are used to bracket each
signal) than to change each citation.
Although normallyrefer limits itself to retrieving the data for the reference, and leaves to a macro package
the job of arranging that data as required by the local format, there are two special options for rearrange-
ments that can not be done by macro packages. The−c option puts fields into all upper case (CAPS-SMALL

CAPS in troff output). The key-letters indicated what information is to be translated to upper case follow
the c, so that−cAJ means that authors’ names and journals are to be in caps. The−a option writes the
names of authors last name first, that isA. D. Hall, Jr. is written asHall, A. D. Jr. The citation form of the
Journal of the ACM, for example, would require both−cA and−a options. This produces authors’ names
in the styleKERNIGHAN, B. W.AND CHERRY, L. L. for the previous example. The−a option may be followed
by a number to indicate how many author names should be reversed;−a1 (without any−c option) would
produceKernighan, B. W. and L. L. Cherry,for example.
Finally, there is also the previously-mentioned−p option to let the user specify a private file of references
to be searched before the public files. Note thatrefer does not insist on a previously made index for these
files. If a file is named which contains reference data but is not indexed, it will be searched (more slowly)
by refer usingfgrep. In this way it is easy for users to keep small files of new references, which can later
be added to the public data bases.

